T cell receptor (TCR) stimulation induces rapid generation of reactive oxygen species, although the mechanisms for this are unclear. Here we found that T cells expressed a functional phagocyte-type nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. TCR crosslinking induced oxidase activation through the recruitment of preformed Fas ligand and Fas. TCR stimulation induced three separable events generating reactive oxygen species: rapid hydrogen peroxide production independent of Fas or NADPH oxidase; sustained hydrogen peroxide production dependent on both Fas and NADPH oxidase; and delayed superoxide production that was dependent on Fas ligand and Fas yet independent of NADPH oxidase. NADPH oxidase-deficient T cells showed enhanced activation of the kinase Erk and a relative increase in T helper type 1 cytokine secretion. Thus, mature T cells express a phagocyte-type NADPH oxidase that regulates elements of TCR signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.