During the last decades, increase of antibiotic resistance among pathogenic bacteria has been considered as a global concern. Therefore, it is important to find new antimicrobial agents and/or therapeutic strategies. In previous studies we investigated antibacterial activity of the CM11 peptide against multiple drug resistant clinical isolates of six bacteria species including Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae and Salmonella typhimurium. In this study, in order to reduce treatment costs and the cytotoxic effect of CM11 peptide, was analyzed its synergic interaction with selected antibiotics. In this reason, specific antibiotics for each bacterium were selected considering the guidelines of the "Clinical and Laboratory Standards Institute". Based on the results , using a checkerboard procedure through the broth microdilution method, MICs of antibiotic agents alone and in combination with the peptide were determined. In most cases, synergistic effects between CM11 peptide and selected antibiotics against six bacteria species were observed as partial synergy. However, for S. aureus and P. aeruginosaa synergic interaction between peptide and selective antibiotics was observed with penicillin and ceftazidime, respectively. For K. pneumoniae, synergic effect was observed when CM11 peptide was used in combination with norfloxacin and also the combination of peptide with norfloxacin showed synergic effect against A. baumannii. Combination between the CM11 peptide and ciprofloxacin showed synergic effect on E. coli while only partial synergy was observed for S. typhimurium in combination with cefotaxime and ceftazidime. These results suggest that when selected antibiotic used in combination with the CM11 peptide, the dose of some antibiotics, especially the dose independent antibiotics, may be reduced for eliminating drug resistant bacteria.
13th International Congress on Infectious Diseases Abstracts, Poster Presentations e459 (PCT) and its effects and important for quickly distinguishing between bacterial and viral infections in children and infantsResults: We found that the procalcitonin (PCT) concentrations increases in bacterial infections but remains low in viral infections and inflammatory diseases. The change is rapid and molecule is stable, making it as potentially useful marker for distinguishing between bacterial and viral infections.Discussion: Its advantages over CRP, IL-6 and INF alpha are clear but it doesn't mean that those methods, despite some disadvantages earlier explained, should be rejected.Comclusions: PCT may be useful in an emergency room for differentiation of bacterial from viral infections in children and for making decisions about antibiotic treatments. The change is rapid and the molecule is stable, making it a potentially useful marker for distinguishing between bacterial and viral infections. Comparing PCT with CRP (C reactive protein), interleukin 6, and interferon alpha demonstrates increased values for PCT than for the others for and thus may be better for differentiation between bacterial and viral infections.
Coronaviruses such as SARS-CoV had caused high fatalness around the globe and have been a terror for public health, crafting a need for effective and active vaccines and drugs. Although this virus, coronavirus causing respiratory syndrome was controlled by non-vaccinated trials and measuresprimarily, still it persisted to be the leading threat for human health. Therefore thestrategy of optimal SAR-CoV drugs and vaccines is a priority, at present. Such drugs and vaccines represent key challenges: the immunity of coronavirus often diminishes quickly, entities craving to be sheltered include the elderly people, and vaccines may worsen rather than preventing coronavirus lung immunopathology. To address these issues, there is a need to promote the approach of prediction and then subjection. There is a necessity of that sort of drug or vaccine that could switch "ON" and "OFF" the metabolic pathways of an organism according to the requirement. Hence,the present study directs towards the prediction of novel drug targets that might aid in the treatment of Severe Acute Respiratory Syndrome and also in the treatment of Bovine Respiratory Disease. Complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.