Ongoing global change and its direct environmental impacts, in addition to securing economic transition to the post-oil era, could trigger complex socio-economic and political crises in oil-dependent economies of the Persian Gulf Region (PGR). To evaluate the role of climate change and related policies in degrading the environment and its socio-economic impacts in the PGR, we have used a variety of available global datasets and published data. The results show that the countries of the PGR pursue some types of socio-economic reforms to alleviate the impacts of climate change. However, it seems that these attempts are not compatible with the environment's capacity. The main problem stems from the fact that political differences between the PGR nations prevent them from managing the Persian Gulf environment as an integrated natural system and consequently they have to limit their efforts within their borders, regardless of what happens in other parts of the system. The shift to alternative revenue sources by the countries needs socioeconomic preparedness while there are environmental obstacles, political tensions and geopolitical rivalries. Unless there is a cooperative approach to mitigate the effects of climate change, accompanied by a reorientation of PGR economies, the situation is likely to worsen rather than improve. To address the challenges of climate change, integrated regional collaborations are needed. Collective action, such as more investment in regional research and development and education, is required if the PGR is to successfully transition from a commodity-based to a knowledge-based economy.
The world's large lakes and their life‐supporting services are rapidly threatened by eutrophication in the warming climate during the Anthropocene. Here, MODIS‐Aqua level 3 chlorophyll‐ a data (2018–2021) were used to monitor trophic state in our planet's largest lake, that is, the Caspian Sea that accounts for approximately 40% of the total lacustrine waters on Earth. We also used the in situ measurements of chlorophyll‐ a data (2009–2019) to further verify the accuracy of the data derived from the MODIS‐Aqua and to explore the deep chlorophyll‐ a maxima (DCMs) in the south Caspian Sea. Our findings show an acceptable agreement between the chlorophyll‐ a data derived from the MODIS‐Aqua and those measured in situ in the coast of Iran (coefficient of determination = 0.71). The oligotrophic, mesotrophic, and eutrophic states cover 66%, 20%, and 13% of the sea surface area, respectively. The DCMs are dominantly regulated by water transparency and they generally observe at depths of less than 20 and 30 m during the cold (autumn and winter) and warm (spring and summer) seasons, respectively. Our results suggest an ever‐increasing chlorophyll‐ a in the shallow zones (i.e., coasts) and even in deep regions of the sea, mainly due to nutrient inputs from the Volga river delta. Alarming increase of chlorophyll‐ a in this transboundary lake can amplify eutrophication under the lens of global warming and further threaten the lake ecosystem's health, where almost all legal agreements have not yet been implemented to protect the lake environment and its rich resources.
Data sets of Acoustic Doppler Current Profiler (ADCP) backscatter intensities (ABS) were used to evaluate suspended sediment concentrations (SSC) in the Mahshahr Channel (MC) of the Persian Gulf. Since the echo intensity is closely related to turbidity in water, the ADCP may be a promising tool to monitor the sediment transport. The low susceptibility of the acoustic backscatter to bio-fouling and the ADCP provision of current profiles as well as sediment time series makes this monitoring method more advantageous compared with the traditional methods. Time series of ADCP backscatter intensity profiles were used for improving temporal resolution of SSC estimates. Backscatter and traditional observational data were separated into two segments. The first part was utilized for calibrating the backscatter data and attributing the intensity to suspended particle concentrations and using the second part acoustic intensities were validated. Acoustic based SSC estimates are slightly underestimated in comparison with traditional water sample based SSC values, but still there is good agreement between acoustic SSC and traditional observations. Results illustrate a rather high correlation between lab based and acoustic based particles in suspension (<i>R</i><sup>2</sup> = 88 %). Additionally measurements reveal the domination of a semidiurnal ebb asymmetric system in the MC. Tidal currents provide the main energy source for particle resuspension and transport. Maximum suspended load concentrations are evident in ebb tides, while the currents strengths are enough to refloat loads from the bed. In general spring tides show higher SSC values compared with neap tides in the study area
Abstract. The physical parameters structures and different water masses using CTD measurements in southwestern part of the Caspian Sea (CS) adjacent to Anzali Port (AP) are investigated. CTD profiles were conducted along a transect perpendicular to the coastline on 13 stations from the coast down to 720 m on 22 January 2008. According to the results the continental shelf waters are located in the surface mixed layer. The surface mixed layer extends itself down to almost 100 m in outer areas of the continental shelf with a weak seasonal thermocline layer between 80 to 140 m Freshwaters inflow of local rivers is clearly seen outside the continental shelf at the surface layers. Investigating the dissolved oxygen reveals that winter convection is traceable down to 500 m in the lateral waters over the shelf break. Among the deeper stations that are located in continental rise and abyssal plain, 300 m seems to be a threshold for penetration of seasonal changes; therefore deeper waters tend to be impermeable against seasonal variances. Despite the small variations, stability is positive in the study area and temperature plays an important role in static stability and in triggering the lateral mixing. In view of both temperature-salinity and temperature-oxygen distributions in the southwestern part of the CS, two different water masses are separable in cold phase. Snapshot observations of physical properties in the early winter 2008, to some extent revealed that a mixing was triggered at least in the lateral waters of the study area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.