The Human Microbiome Project (HMP), funded as an initiative of the NIH Roadmap for Biomedical Research (http://nihroadmap.nih.gov), is a multi-component community resource. The goals of the HMP are: (1) to take advantage of new, high-throughput technologies to characterize the human microbiome more fully by studying samples from multiple body sites from each of at least 250 “normal” volunteers; (2) to determine whether there are associations between changes in the microbiome and health/disease by studying several different medical conditions; and (3) to provide both a standardized data resource and new technological approaches to enable such studies to be undertaken broadly in the scientific community. The ethical, legal, and social implications of such research are being systematically studied as well. The ultimate objective of the HMP is to demonstrate that there are opportunities to improve human health through monitoring or manipulation of the human microbiome. The history and implementation of this new program are described here.
Chronic alcohol consumption is associated with an increased risk for cancers of many organs, such as oral cavity, pharynx, larynx, and esophagus; breast; liver; ovary; colon; rectum; stomach; and pancreas. An understanding of the underlying mechanisms by which chronic alcohol consumption promotes carcinogenesis is important for development of appropriate strategies for prevention and treatment of alcohol-associated cancers. The National Institute on Alcohol Abuse and Alcoholism, Office of Dietary Supplements, Office of Rare Diseases, National Cancer Institute, National Institute on Drug Abuse, and National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, sponsored an international symposium on Mechanisms of Alcohol-Associated Cancers in Bethesda, Maryland, USA, October 2004. The following is a summary of the symposium. Chronic ethanol consumption may promote carcinogenesis by (1) production of acetaldehyde, which is a weak mutagen and carcinogen; (2) induction of cytochrome P450 2E1 and associated oxidative stress and conversion of procarcinogens to carcinogens; (3) depletion of S-adenosylmethionine and, consequently, induction of global DNA hypomethylation; (4) induction of increased production of inhibitory guanine nucleotide regulatory proteins and components of extracellular signal-regulated kinase-mitogen-activated protein kinase signaling; (5) accumulation of iron and associated oxidative stress; (6) inactivation of the tumor suppressor gene BRCA1 and increased estrogen responsiveness (primarily in breast); and (7) impairment of retinoic acid metabolism. Nicotine may promote carcinogenesis through activation of extracellular signal-regulated kinase/cyclooxygenase-2/vascular endothelial growth factor signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.