This text proposes a fast, rapidly convergent Nyström method for the solution of the Lippmann-Schwinger integral equation that mathematically models the scattering of time-harmonic acoustic waves by inhomogeneous obstacles, while allowing the material properties to jump across the interface. The method works with overlapping coordinate charts as a description of the given scatterer. In particular, it employs "partitions of unity" to simplify the implementation of highorder quadratures along with suitable changes of parametric variables to analytically resolve the singularities present in the integral operator to achieve desired accuracies in approximations. To deal with the discontinuous material interface in a high-order manner, a specialized quadrature is used in the boundary region. The approach further utilizes an FFT based strategy that uses equivalent source approximations to accelerate the evaluation of large number of interactions that arise in the approximation of the volumetric integral operator and thus achieves a reduced computational complexity of O(N log N ) for an N -point discretization. A detailed discussion on the solution methodology along with a variety of numerical experiments to exemplify its performance in terms of both speed and accuracy are presented in this paper. arXiv:1509.05063v1 [math.NA] 16 Sep 2015
This paper presents a "two-dimensional Fourier Continuation" method (2D-FC) for construction of bi-periodic extensions of smooth non-periodic functions defined over general two-dimensional smooth domains. The approach can be directly generalized to domains of any given dimensionality, and even to non-smooth domains, but such generalizations are not considered here. The 2D-FC extensions are produced in a two-step procedure. In the first step the one-dimensional Fourier Continuation method is applied along a discrete set of outward boundary-normal directions to produce, along such directions, continuations that vanish outside a narrow interval beyond the boundary. Thus, the first step of the algorithm produces "blending-to-zero along normals" for the given function values. In the second step, the extended function values are evaluated on an underlying Cartesian grid by means of an efficient, high-order boundary-normal interpolation scheme. A Fourier Continuation expansion of the given function can then be obtained by a direct application of the two-dimensional Fast Fourier Transform (FFT). Algorithms of arbitrarily high order of accuracy can be obtained by this method. The usefulness and performance of the proposed two-dimensional Fourier Continuation method are illustrated with applications to the Poisson equation and the time-domain wave equation within a bounded domain. As part of these examples the novel "Fourier Forwarding" solver is introduced which, propagating plane waves as they would in free space and relying on certain boundary corrections, can solve the time-domain wave equation and other hyperbolic partial differential equations within general domains at computing costs that grow sublinearly with the size of the spatial discretization.
This paper presents a fast "two-dimensional Fourier continuation" (2D-FC) method for construction of biperiodic extensions of smooth nonperiodic functions defined over general twodimensional smooth domains. The approach, which runs at a cost of O(N log N ) operations for an Npoint discretization grid, can be directly generalized to domains of any given dimensionality, but such generalizations are not considered in this contribution. The 2D-FC extensions are produced in a twostep procedure. In the first step the one-dimensional Fourier continuation method is applied along a discrete set of outward boundary-normal directions to produce, along such directions, continuations that vanish outside a narrow interval beyond the boundary. Thus, the first step of the algorithm produces "blending-to-zero along normals" for the given function values. In the second step, the extended function values are evaluated on an underlying Cartesian grid by means of an efficient, high-order boundary-normal interpolation scheme. A Fourier continuation expansion of the given function can then be obtained by a direct application of the two-dimensional fast Fourier transform (FFT). Algorithms of arbitrarily high order of accuracy can be obtained by this method. The usefulness and performance of the proposed 2D-FC method are illustrated with applications to the Poisson equation and the time-domain wave equation within a bounded domain. As part of these examples the novel "Fourier forwarding" solver is introduced which, propagating plane waves as they would in free space and relying on certain boundary corrections, can solve the time-domain wave equation and other hyperbolic partial differential equations within general domains at computing costs that grow sublinearly with the size of the spatial discretization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.