Reports of cognitive decline, symptom worsening and brain atrophy in bipolar disorder (BD) suggest that the disease progresses over time. The worsening neuropathology may involve excitotoxicity and neuroinflammation. We determined protein and mRNA levels of excitotoxicity and neuroinflammatory markers in postmortem frontal cortex from 10 BD patients and 10 age-matched controls. The brain tissue was matched for age, postmortem interval and pH. The results indicated statistically significant lower protein and mRNA levels of the N-methyl-Daspartate receptors, NR-1 and NR-3A, but significantly higher protein and mRNA levels of interleukin (IL)-1b, the IL-1 receptor (IL-1R), myeloid differentiation factor 88, nuclear factorkappa B subunits, and astroglial and microglial markers (glial fibrillary acidic protein, inducible nitric oxide synthase, c-fos and CD11b) in postmortem frontal cortex from BD compared with control subjects. There was no significant difference in mRNA levels of tumor necrosis factor alpha or neuronal nitric oxide synthase in the same region. These data show the presence of excitotoxicity and neuroinflammation in BD frontal cortex, with particular activation of the IL-R cascade. The changes may account for reported evidence of disease progression in BD and be a target for future therapy.
Plasma α-linolenic acid (α-LNA, 18:3n-3) or linoleic acid (LA, 18:2n-6) does not contribute significantly to the brain content of docosahexaenoic acid (DHA, 22:6n-3) or arachidonic acid (AA, 20:4n-6), respectively, and neither DHA nor AA can be synthesized de novo in vertebrate tissue. Therefore, measured rates of incorporation of circulating DHA or AA into brain exactly represent the rates of consumption by brain. Positron emission tomography (PET) has been used to show, based on this information, that the adult human brain consumes AA and DHA at rates of 17.8 and 4.6 mg/ day, respectively, and that AA consumption does not change significantly with age. In unanesthetized adult rats fed an n-3 PUFA "adequate" diet containing 4.6% α-LNA (of total fatty acids) as its only n-3 PUFA, the rate of liver synthesis of DHA is more than sufficient to replace maintain brain DHA, whereas the brain's rate of synthesis is very low and unable to do so. Reducing dietary α-LNA in an DHA-free diet fed to rats leads to upregulation of liver coefficients of α-LNA conversion to DHA and of liver expression of elongases and desaturases that catalyze this conversion. Concurrently, the brain DHA loss slows due to downregulation of several of its DHA-metabolizing enzymes. Dietary α-LNA deficiency also promotes accumulation of brain docosapentaenoic acid (22:5n-6), and upregulates expression of AA-metabolizing enzymes, including cytosolic and secretory phospholipase A 2 and cyclooxygenase-2. These changes, plus reduced levels of brain derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB), likely render the brain more vulnerable to neuropathological insults.
Alzheimer's disease (AD) and bipolar disorder (BD) are progressive brain disorders. Upregulated mRNA and protein levels of neuroinflammatory and arachidonic acid (AA) markers with loss of synaptic markers (synaptophysin and drebrin) have been reported in brain tissue from AD and BD patients. We hypothesized that some of these changes are associated with epigenetic modifications of relevant genes. To test this, we measured gene-specific CpG methylation, global DNA methylation and histone modifications in postmortem frontal cortex from BD (n=10) and AD (n=10) patients and respective age-matched controls (10 per group). AD and BD brains showed several epigenetic similarities, including global DNA hypermethylation, and histone H3 phosphorylation. These changes were associated with hypo- and hypermethylation of CpG islands in cyclooxygenase-2 and brain-derived neurotrophic factor promoter regions, respectively. Only the AD brain showed hyper- and hypomethylated CpG islands in promoter regions for cAMP response element-binding protein and nuclear transcription factor kappa B genes, respectively. Only the BD brain demonstrated increased global histone H3 acetylation and hypermethylation of the promotor region for the drebrin-like protein gene. There was no significant epigenetic modification for 12-lipooxygenase or p450 epoxygenase in either illness. Many observed epigenetic changes were inversely related to respective changes in mRNA and protein levels. These epigenetic modifications involving neuroinflammatory, AA cascade and synaptic markers may contribute to progression in AD and BD and identify new targets for drug development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.