Thinning is a well-known iterative layer-by-layer reduction operator to obtain skeletons of the binary objects. These skeletons are used as shape descriptors in many image processing, image analysis and pattern recognition applications. Thus obtaining topology preserved, centrally aligned and connected single pixel thin skeleton, without spurs and excessive erosions, and noise tolerant at pre-processing stage is essential to the success of later processing stages. The end-point based algorithms preserve original shape but results in extra spurs due to the presence of unwanted endpoints. The isthmus-based algorithms produce less spurs but causes excessive erosions. Hence in this paper, we proposed an efficient fully parallel thinning algorithm for 2D binary images. we proposed a general methodology for removing noise prior to thinning. A comparison with recent algorithms by the proposed method showed the better skeleton quality, efficiency and robustness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.