BackgroundThe recA/RAD51 gene family encodes a diverse set of recombinase proteins that affect homologous recombination, DNA-repair, and genome stability. The recA gene family is expressed across all three domains of life - Eubacteria, Archaea, and Eukaryotes - and even in some viruses. To date, efforts to resolve the deep evolutionary origins of this ancient protein family have been hindered by the high sequence divergence between paralogous groups (i.e. ~30% average pairwise identity).ResultsThrough large taxon sampling and the use of a phylogenetic algorithm designed for inferring evolutionary events in highly divergent paralogs, we obtained a robust, parsimonious and more refined phylogenetic history of the recA/RAD51 superfamily.ConclusionsIn summary, our model for the evolution of recA/RAD51 family provides a better understanding of the ancient origin of recA proteins and the multiple events that lead to the diversification of recA homologs in eukaryotes, including the discovery of additional RAD51 sub-families.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.