Ferrocenium catalysis is a vibrant research area, and an increasing number of ferrocenium-catalyzed processes have been reported in the recent years. However, the ferrocenium cation is not very stable in solution, which may potentially hamper catalytic applications. In an effort to stabilize ferrocenium-type architectures by inserting a bridge between the cyclopentadienyl rings, we investigated two ferrocenophanium (or ansa-ferrocenium) cations with respect to their stability and catalytic activity in propargylic substitution reactions. One of the ferrocenophanium complexes was characterized by single crystal X-ray diffraction. Cyclic voltammetry experiments of the ferrocenophane parent compounds were performed in the absence and presence of alcohol nucleophiles, and the stability of the cations in solution was judged based on the reversibility of the electron transfer. The experiments revealed a moderate stabilizing effect of the bridge, albeit the effect is not very pronounced or straightforward. Catalytic propargylic substitution test reactions revealed decreased activity of the ferrocenophanium cations compared to the ferrocenium cation. It appears that the somewhat stabilized ferrocenophanium cations show decreased catalytic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.