above, chiral metamaterials basically exhibit gigantic optical activity and circular dichroism, the potential of which can be clearly seen in the realization of compact polarization rotators, [23][24][25][26][27][28][29][30] and circular polarizers. [31][32][33][34] Chiral metamaterials mimic naturally existing chiral media, where the degeneracy between right-and left-circularly polarized waves (RCP and LCP waves) is lifted due to the magnetoelectric coupling in chiral molecules. [35] This results in the difference in refractive indices for the RCP and LCP waves, which can be described by a chirality parameter κ. The constitutive relations for a chiral medium are written as
Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.
Photonic crystals have revolutionized the field of optics with their unique dispersion and energy band gap engineering capabilities, such as the demonstration of extreme group and phase velocities, topologically protected photonic edge states, and control of spontaneous emission of photons. Time-variant media have also shown distinct functionalities, including nonreciprocal propagation, frequency conversion, and amplification of light. However, spatiotemporal modulation has mostly been studied as a simple harmonic wave function. Here, we analyze time-variant and spatially discrete photonic crystal structures, referred to as spatiotemporal crystals. The design of spatiotemporal crystals allows engineering of the momentum band gap within which parametric amplification can occur. As a potential platform for the construction of a parametric oscillator, a finite-sized spatiotemporal crystal is proposed and analyzed. Parametric oscillation is initiated by the energy and momentum conversion of an incident wave and the subsequent amplification by parametric gain within the momentum band gap. The oscillation process dominates over frequency mixing interactions above a transition threshold determined by the balance between gain and loss. Furthermore, the asymmetric formation of momentum band gaps can be realized by spatial phase control of the temporal modulation, which leads to directional radiation of oscillations at distinct frequencies. The proposed structure would enable simultaneous engineering of energy and momentum band gaps and provide a guideline for implementation of advanced dispersion-engineered parametric oscillators.
Terahertz radiation and its nonlinear optical manipulation may possess potential for a variety of applications in next‐generation electronics and optics. Pioneering studies have shown that the nonlinearity of carrier drift in semiconductors and graphene can be utilized for nonlinear optical processes at terahertz frequencies. However, because of the symmetric response of carriers to the terahertz field direction, most experiments have confirmed only the presence of odd‐order nonlinear processes. In this study, electric‐field‐induced terahertz second‐harmonic generation (SHG) in photoexcited gallium arsenide is demonstrated, where an applied bias field breaks the directional symmetry of the drift transport of electrons. The amplitudes of odd‐ and even‐harmonic waves are found to be highly controllable using the bias field. The measured conversion efficiency of SHG reaches beyond 10−5, substantially higher than the value previously reported. This terahertz harmonic generation platform with electrical controllability may be useful for future nonlinear applications at terahertz frequencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.