Summary Bipolaris sorokiniana (teleomorph Cochliobolus sativus ) is the causal agent of common root rot, leaf spot disease, seedling blight, head blight, and black point of wheat and barley. The fungus is one of the most serious foliar disease constraints for both crops in warmer growing areas and causes significant yield losses. High temperature and high relative humidity favour the outbreak of the disease, in particular in South Asia's intensive ‘irrigated wheat–rice’ production systems. In this article, we review the taxonomy and worldwide distribution, as well as strategies to counteract the disease as an emerging threat to cereal production systems. We also review the current understanding of the cytological and molecular aspects of the interaction of the fungus with its cereal hosts, which makes B. sorokiniana a model organism for studying plant defence responses to hemibiotrophic pathogens. The contrasting roles of cell death and H 2O2 generation in plant defence during biotrophic and necrotrophic fungal growth phases are discussed.
In search of new durable disease resistance traits in barley to control leaf spot blotch disease caused by the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus), we developed macroscopic and microscopic scales to judge spot blotch disease development on barley. Infection of barley was associated with cell wall penetration and accumulation of hydrogen peroxide. The latter appeared to take place in cell wall swellings under fungal penetration attempts as well as during cell death provoked by the necrotrophic pathogen. Additionally, we tested the influence of a compromised Mlo pathway that confers broad resistance against powdery mildew fungus (Blumeria graminis f. sp. hordei). Powdery mildew-resistant genotypes with mutations at the Mlo locus (mlo genotypes) showed a higher sensitivity to infiltration of toxic culture filtrate of Bipolaris sorokiniana as compared with wild-type barley. Mutants defective in Ror, a gene required for mlo-specified powdery mildew resistance, were also more sensitive to Bipolaris sorokiniana toxins than wild-type barley but showed less symptoms than mlo5 parents. Fungal culture filtrates induced an H2O2 burst in all mutants, whereas wild-type (Mlo) barley was less sensitive. The results support the hypothesis that the barley Mlo gene product functions as a suppresser of cell death. Therefore, a compromised Mlo pathway is effective for control of biotrophic powdery mildew fungus but not for necrotrophic Bipolaris sorokiniana. We discuss the problem of finding resistance traits that are effective against both biotrophic and necrotrophic pathogens with emphasis on the role of the anti-oxidative system of plant cells.
Isoflavones are naturally occurring compounds found in soybean [Glycine max (L.) Merr.]. Soybean isoflavone, as a quantitative trait, is subject to significant genotype × environment interaction, which makes breeding for this trait difficult. Thirty F4:7 soybean lines, derived from crosses of ‘RCAT Angora’ × CK‐01 and ‘Heinong 35’ × RCAT Angora were classified within each population as high, intermediate, or low isoflavone. The lines, parents, and two maturity checks were grown in four locations in 2005 and six locations in 2006 across Ontario and Quebec, Canada. Isoflavone content of the mature seed was determined by near‐infrared reflectance. The effects of genotype, environment, and the genotype × environment (G × E) interaction were significant. Consistently performing genotypes from the two populations were identified by several stability parameters. Genotype–genotype × environment (GGE) biplot demonstrated an ability to provide information on both the genotypes and the environments in which they were evaluated. The identification of genotypes with consistent placement in either the high‐ and low‐isoflavone classes suggested that breeding for relative isoflavone content in soybean is possible, although breeding for absolute stability remains a challenge, given the large environmental influence on soybean isoflavone levels.
A comprehensive germplasm evaluation study of wheat accessions conserved in the Indian National Genebank was conducted to identify sources of rust and spot blotch resistance. Genebank accessions comprising three species of wheat–Triticum aestivum, T. durum and T. dicoccum were screened sequentially at multiple disease hotspots, during the 2011–14 crop seasons, carrying only resistant accessions to the next step of evaluation. Wheat accessions which were found to be resistant in the field were then assayed for seedling resistance and profiled using molecular markers. In the primary evaluation, 19,460 accessions were screened at Wellington (Tamil Nadu), a hotspot for wheat rusts. We identified 4925 accessions to be resistant and these were further evaluated at Gurdaspur (Punjab), a hotspot for stripe rust and at Cooch Behar (West Bengal), a hotspot for spot blotch. The second round evaluation identified 498 accessions potentially resistant to multiple rusts and 868 accessions potentially resistant to spot blotch. Evaluation of rust resistant accessions for seedling resistance against seven virulent pathotypes of three rusts under artificial epiphytotic conditions identified 137 accessions potentially resistant to multiple rusts. Molecular analysis to identify different combinations of genetic loci imparting resistance to leaf rust, stem rust, stripe rust and spot blotch using linked molecular markers, identified 45 wheat accessions containing known resistance genes against all three rusts as well as a QTL for spot blotch resistance. The resistant germplasm accessions, particularly against stripe rust, identified in this study can be excellent potential candidates to be employed for breeding resistance into the background of high yielding wheat cultivars through conventional or molecular breeding approaches, and are expected to contribute toward food security at national and global levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.