The vascular organization and endothelial cell specialization of the air-breathing organs of Anabas testudineus were examined by light and scanning electron microscopy of fixed tissue and vascular corrosion replicas. The vessels supplying blood to the lining of paired suprabranchial chambers and the plicated labyrinthine organs within the chambers are tripartite, having a median artery and paired, lateral veins. Hundreds of respiratory islets, the functional units of gas exchange, cover the surfaces of both the chamber and labyrinthine organ. A median islet artery supplies the central aspect of each islet and gives rise to numerous short arterioles from which the transverse channels are formed. Transverse channels are parallel capillary-sized vessels that extend in two rows away from the medial arterioles and drain laterally into one of two lateral islet veins. Basally situated single rows of endothelial cells lining the transverse channels form thick, evaginated, tongue-like cytoplasmic processes that project freely into the lumen from the tissue side of the channel. Other thin, septate, cytoplasmic extensions of the same cells form valve-like septa that extend across the channel. Both the septa and tongue-like processes appear to direct the red blood cells to the epithelial side of the channel and thus decrease the diffusion distance between the air and red cell. A large sinusoidal space lies under the transverse channels and may support the channels and even elevate them during increased oxygen demand. The epithelium covering the transverse channels is smooth, which enhances air convection and minimizes unstirred layer effects. The epithelium between the channels contains microvilli that may serve to trap bacteria or particulates and to humidify the air chambers.
The general macrocirculation and branchial microcirculation of the air-breathing climbing perch, Anabas testudineus, was examined by light and scanning electron microscopy of vascular corrosion replicas. The ventral aorta arises from the heart as a short vessel that immediately bifurcates into a dorsal and a ventral branch. The ventral branch distributes blood to gill arches 1 and 2, the dorsal branch to arches 3 and 4. The vascular organization of arches 1 and 2 is similar to that described for aquatic breathing teleosts. The respiratory lamellae are well developed but lack a continuous inner marginal channel. The filaments contain an extensive nutritive and interlamellar network; the latter traverses the filament between, but in register with, the inner lamellar margins. Numerous small, tortuous vessels arise from the efferent filamental and branchial arteries and anastomose with each other to form the nutrient supply for the filament, adductor muscles, and arch supportive tissues. The efferent branchial arteries of arches 1 and 2 supply the accessory air-breathing organs. Arches 3 and 4 are modified to serve primarily as large-bore shunts between the dorsal branch of the ventral aorta and the dorsal aorta. In many filaments from arches 3 and 4, the respiratory lamellae are condensed and have only 1-3 large channels. In some instances in arch 4, shunt vessels arise from the afferent branchial artery and connect directly with the efferent filamental artery. The filamental nutrient and interlamellar systems are poorly developed or absent. The respiratory and systemic pathways in Anabas are arranged in parallel. Blood flows from the ventral branch of the ventral aorta, through gill arches 1 and 2, into the accessory respiratory organs, and then returns to the heart. Blood, after entering the dorsal branch of the ventral aorta, passes through gill arches 3 and 4 and proceeds to the systemic circulation. This arrangement optimizes oxygen delivery to the tissues and minimizes intravascular pressure in the branchial and air-breathing organs. The efficiency of this system is limited by the mixing of respiratory and systemic venous blood at the heart.
Keratinized regions were found to occur in the rostral cap, adhesive pad and horny jaw sheaths associated with the lips of Garra lamta, which inhabits fast flowing turbulent hill streams. In these structures, the surface epithelial cells were modified into characteristic keratinized spine-like or columnar tooth-like unculi, which would provide firm anchorage for the fish on the substratum and assist the fish in browsing or scraping food materials from it. # 2004 The Fisheries Society of the British Isles
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.