The present work reveals the potential of biosurfactant producing PBS for microbial enhanced oil recovery (MEOR). The biosurfactant production medium and culture conditions were optimized using response surface methodology. The optimization of media components and process parameters was consecutively executed in two sets of experimental runs designed by central composite rotatable design (CCRD). The maximum biosurfactant yield was attained with 2% fresh inoculum of PBS in minimal salt medium (pH 7), possessing 2.17% sodium citrate as C-source and 0.5% yeast extract as N-source, after 48 h upon incubation at 30 °C/150 rpm. Under optimum conditions, biosurfactant yield was increased more than threefold and turned out to be 2.65 g/L as compared to 0.82 g/L under previous conditions. The biosurfactant was characterized as a glycolipid comprising of four rhamnolipid homologs (RhaRhaCC, RhaRhaCC, RhaRhaCC/RhaRhaCC, RhaCC) by thin layer chromatography, fourier transform infrared spectroscopy, nuclear magnetic resonance and mass spectrometry. The produced biosurfactant was highly efficient for oil recovery application showing extreme reduction in surface tension of medium (71.80 to 23.76 mN/m), immense hydrocarbons emulsification capacity (50-60%) and greater stability at wide range of temperature (4-100 °C) and pH (4-10) along with an excellent (56.18 ± 1.59%) additional oil recovery in sand-pack column lab test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.