Aims Chickpea (Cicer arietinum L.) is considered a salt sensitive species, but some genetic variation for salinity tolerance exists. The present study was initiated to determine the degree of salt tolerance among chickpea genotypes, and the relationship between salt tolerance and ion accumulation in leaves and reproductive tissues. Methods Three experiments were conducted in a glasshouse in Perth, Western Australia, in which up to 55 genotypes of chickpea were subjected to 0, 40 or 60mM NaCl added to the soil to determine the variation in salt tolerance, and the association between salt tolerance and reproductive success. Pod and seed numbers, seed yield and yield components, pollen viability, in vitro pollen germination and in vivo pollen tube growth, were used to evaluate reproductive success. Leaves, flowers and seeds were sampled in the reproductive phase to measure the concentrations of sodium, potassium and chloride ions in these organs. Results When grown in soil with 40mM NaCl, a 27fold range in seed yield was observed among the 55 chickpea genotypes. The increased salt tolerance, as measured by yield under salinity or relative yield under saline conditions, was positively associated with
Starch is one of the most abundant biopolymers in nature and is typically isolated from plants in the form of micro-scale granules. Raw starch has limited applications due to its innate disadvantages such as poor solubility in cold water, tendency to retrograde and high viscosity once it is gelatinized. Therefore, some degree of modification is required to enhance its functionality. Starch nanoparticle is one of the products of such modification. Chemical, enzymatic, and physical treatments are used for the preparation of starch nanoparticles and to study their granular and molecular structures. Characterization of starch nanoparticles on the size distribution, crystalline structure, and physical properties in relation to the starch sources and preparation methods can be done using various characterization tools e.g. Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Florescence Microscopy, etc. Starch nanoparticles can be used as a food additive as it has adverse range of uses in food such as emulsion stabilizer, fat replacer, Thickener, or rheology modifier etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.