Audio signals generated by the human body (e.g., sighs, breathing, heart, digestion, vibration sounds) have routinely been used by clinicians as indicators to diagnose disease or assess disease progression. Until recently, such signals were usually collected through manual auscultation at scheduled visits. Research has now started to use digital technology to gather bodily sounds (e.g., from digital stethoscopes) for cardiovascular or respiratory examination, which could then be used for automatic analysis. Some initial work shows promise in detecting diagnostic signals of COVID-19 from voice and coughs. In this paper we describe our data analysis over a large-scale crowdsourced dataset of respiratory sounds collected to aid diagnosis of COVID-19. We use coughs and breathing to understand how discernible COVID-19 sounds are from those in asthma or healthy controls. Our results show that even a simple binary machine learning classifier is able to classify correctly healthy and COVID-19 sounds. We also show how we distinguish a user who tested positive for COVID-19 and has a cough from a healthy user with a cough, and users who tested positive for COVID-19 and have a cough from users with asthma and a cough. Our models achieve an AUC of above 80% across all tasks. These results are preliminary and only scratch the surface of the potential of this type of data and audio-based machine learning. This work opens the door to further investigation of how automatically analysed respiratory patterns could be used as pre-screening signals to aid COVID-19 diagnosis. CCS CONCEPTS • Information systems → Data mining; • Human-centered computing → User studies; Ubiquitous and mobile computing; • Computing methodologies → Machine learning. * Ordered alphabetically, equal contribution.
The INTERSPEECH 2021 Computational Paralinguistics Challenge addresses four different problems for the first time in a research competition under well-defined conditions: In the COVID-19 Cough and COVID-19 Speech Sub-Challenges, a binary classification on COVID-19 infection has to be made based on coughing sounds and speech; in the Escalation Sub-Challenge, a three-way assessment of the level of escalation in a dialogue is featured; and in the Primates Sub-Challenge, four species vs background need to be classified. We describe the Sub-Challenges, baseline feature extraction, and classifiers based on the 'usual' COMPARE and BoAW features as well as deep unsupervised representation learning using the AUDEEP toolkit, and deep feature extraction from pre-trained CNNs using the DEEP SPECTRUM toolkit; in addition, we add deep end-to-end sequential modelling, and partially linguistic analysis.
To identify Coronavirus disease (COVID-19) cases efficiently, affordably, and at scale, recent work has shown how audio (including cough, breathing and voice) based approaches can be used for testing. However, there is a lack of exploration of how biases and methodological decisions impact these tools’ performance in practice. In this paper, we explore the realistic performance of audio-based digital testing of COVID-19. To investigate this, we collected a large crowdsourced respiratory audio dataset through a mobile app, alongside symptoms and COVID-19 test results. Within the collected dataset, we selected 5240 samples from 2478 English-speaking participants and split them into participant-independent sets for model development and validation. In addition to controlling the language, we also balanced demographics for model training to avoid potential acoustic bias. We used these audio samples to construct an audio-based COVID-19 prediction model. The unbiased model took features extracted from breathing, coughs and voice signals as predictors and yielded an AUC-ROC of 0.71 (95% CI: 0.65–0.77). We further explored several scenarios with different types of unbalanced data distributions to demonstrate how biases and participant splits affect the performance. With these different, but less appropriate, evaluation strategies, the performance could be overestimated, reaching an AUC up to 0.90 (95% CI: 0.85–0.95) in some circumstances. We found that an unrealistic experimental setting can result in misleading, sometimes over-optimistic, performance. Instead, we reported complete and reliable results on crowd-sourced data, which would allow medical professionals and policy makers to accurately assess the value of this technology and facilitate its deployment.
In the envisioned ubiquitous world, services will follow users as they move across smart surroundings. Services are instantiated to users through the environment, appearing and disappearing as they move, which reduces the need for personal communication devices such as smartphones or tablets. To facilitate this development, service architectures need to support virtualized, on-demand service composition based on the hardware and software resources available at the current user location. The technical context for this type of user interaction with digital services through smart surroundings is called Internet of Everything (IoE). Today's service architectures will be too inflexible in this highly decentralized and dynamic environment. Hence, in this article we propose a novel service model called nanoEdge, where nodes collaboratively provide needed functions for virtual services that need to be deployed locally due to performance, efficiency or reliability requirements, for example. The main contributions of this article are the nanoEdge conceptual model and its proof-of-concept (PoC) implementation to show that the model is feasible with regard to performance and resource-efficiency. The successful demonstration of PoC implementation exemplifies future IoE service scenarios with today's hardware components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.