Detection and classification of vehicles are very significant components in an Intelligent-Transportation System. Existing solutions not only use heavy-weight and costly equipment, but also largely depend on constant cloud (Internet) connectivity, as well as adequate uninterrupted power-supply. Such dependencies make these solutions fundamentally impractical considering the possible adversities of outdoor environment as well as requirement of correlated wide-area operation. For practical use, apart from being technically sound and accurate, a solution has to be lightweight, cost-effective, easy-to-install, flexible as well as supporting efficient time-correlated coverage over large area. In this work we propose an IoT-assisted strategy to fulfil all these goals together. We adopt a top-down approach where we first introduce a lightweight framework for time-correlated low-cost wide-area measurement and then reuse the concept for developing the individual measurement units. Our extensive outdoor measurement studies and trace-based simulation on the empirical data show about 98% accuracy in vehicle detection and upto 93% of accuracy in classification of the vehicles over moderately busy urban roads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.