Cancer cells are characterized by genetic and epigenetic alterations and phytochemicals, epigenetic modulators, are considered as promising candidates for epigenetic therapy of cancer. In the present study, we have investigated cancer cell fates upon stimulation of breast cancer cells (MCF-7, MDA-MB-231, SK-BR-3) with low doses of sulforaphane (SFN), an isothiocyanate. SFN (5-10 µM) promoted cell cycle arrest, elevation in the levels of p21 and p27 and cellular senescence, whereas at the concentration of 20 µM, apoptosis was induced. The effects were accompanied by nitro-oxidative stress, genotoxicity and diminished AKT signaling. Moreover, SFN stimulated energy stress as judged by decreased pools of ATP and AMPK activation, and autophagy induction. Anticancer effects of SFN were mediated by global DNA hypomethylation, decreased levels of DNA methyltransferases (DNMT1, DNMT3B) and diminished pools of N6-methyladenosine (m6A) RNA methylation. SFN (10 µM) also affected microRNA profiles, namely SFN caused upregulation of sixty microRNAs and downregulation of thirty two microRNAs, and SFN promoted statistically significant decrease in the levels of miR-23b, miR-92b, miR-381 and miR-382 in three breast cancer cells. Taken together, we show for the first time that SFN is an epigenetic modulator in breast cancer cells that results in cell cycle arrest and senescence, and SFN may be considered to be used in epigenome-focused anticancer therapy.
Plant-derived pentacyclic triterpenotids with multiple biological activities are considered as promising candidates for cancer therapy and prevention. However, their mechanisms of action are not fully understood. In the present study, we have analyzed the effects of low dose treatment (5–20 µM) of ursolic acid (UA) and betulinic acid (BA) on breast cancer cells of different receptor status, namely MCF-7 (ER+, PR+/−, HER2−), MDA-MB-231 (ER−, PR−, HER2−) and SK-BR-3 (ER−, PR−, HER2+). UA-mediated response was more potent than BA-mediated response. Triterpenotids (5–10 µM) caused G0/G1 cell cycle arrest, an increase in p21 levels and SA-beta-galactosidase staining that was accompanied by oxidative stress and DNA damage. UA (20 µM) also diminished AKT signaling that affected glycolysis as judged by decreased levels of HK2, PKM2, ATP and lactate. UA-induced energy stress activated AMPK that resulted in cytotoxic autophagy and apoptosis. UA-mediated elevation in nitric oxide levels and ATM activation may also account for AMPK activation-mediated cytotoxic response. Moreover, UA-promoted apoptosis was associated with decreased pERK1/2 signals and the depolarization of mitochondrial membrane potential. Taken together, we have shown for the first time that UA at low micromolar range may promote its anticancer action by targeting glycolysis in phenotypically distinct breast cancer cells.
Methyltransferase DNMT2 is suggested to be involved in the regulation of numerous processes, however its biological significance and underlying molecular mechanisms remain elusive. In the present study, we have used WI-38 and BJ human fibroblasts as an in vitro model system to investigate the effects of siRNA-based DNMT2 silencing. DNMT2-depleted cells were found to be sensitive to oxidative stress conditions as judged by increased production of reactive oxygen species and susceptible to DNA damage that resulted in the inhibition of cell proliferation. DNMT2 silencing promoted upregulation of proliferation-related and tumor suppressor miRNAs, namely miR-28-3p, miR-34a-3p, miR-30b-5p, miR-29b-3p, miR-200c-3p, miR-28-5p, miR-379-5p, miR-382-5p, miR-194-5p, miR-193b-3p and miR-409-3p. Moreover, DNMT2 silencing induced cellular senescence and DNMT2 levels were elevated in replicatively senescent cells. Taken together, we found that DNMT2 may take part in the regulation of cell proliferation and longevity in human fibroblasts and speculate that the manipulation of DNMT2 levels that limits cell proliferation may be potentially useful anticancer strategy.
Cellular senescence may be a side effect of chemotherapy and other anti-cancer treatments that may promote inflammation and paracrine secondary senescence in healthy tissues. DNMT2/TRDMT1 methyltransferase is implicated in the regulation of cellular lifespan and DNA damage response (DDR). In the present study, the responses to senescence inducing concentrations of doxorubicin and etoposide in different cancer cells with DNMT2/TRDMT1 gene knockout were evaluated, namely changes in the cell cycle, apoptosis, autophagy, interleukin levels, genetic stability and DDR, and 5-mC and NSUN1-6 levels. Moreover, the effect of azacytidine post-treatment was considered. Diverse responses were revealed that was based on type of cancer cells (breast and cervical cancer, osteosarcoma and glioblastoma cells) and anti-cancer drugs. DNMT2/TRDMT1 gene knockout in drug-treated glioblastoma cells resulted in decreased number of apoptotic and senescent cells, IL-8 levels and autophagy, and increased number of necrotic cells, DNA damage and affected DDR compared to drug-treated glioblastoma cells with unmodified levels of DNMT2/TRDMT1. We suggest that DNMT2/TRDMT1 gene knockout in selected experimental settings may potentiate some adverse effects associated with chemotherapy-induced senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.