s u m m a r yThe relationship between d 2 H and d 18 O in precipitation at a site, known as the local meteoric water line (LMWL), is normally defined using an ordinary least squares regression (OLSR) which gives equal weighting to all data points regardless of the precipitation amount they represent. However, smaller precipitation amounts are more likely to have a lower D-excess due to re-evaporation of raindrops below the cloud-base or biases in the sampling method. In this paper we present an equation for a precipitation amount weighted least squares regression (PWLSR) that will correct these biases for use in groundwater and surface hydrology applications.New LMWL equations are presented for Australian sites in the Global Network of Isotopes in Precipitation (GNIP), where the PWLSR consistently produces a LMWL with a larger gradient than the OLSR. Perth and Alice Springs exhibit the largest change in slope. This is consistent with the higher frequency of small monthly precipitation amounts with low D-excess values occurring at these sites in summer for Perth and throughout the year for Alice Springs.The PWLSR method was also applied to 288 stations in the GNIP data base (N > 36) and the difference between the slopes of the LMWLs (Da = slope PWLSR -slope OLSR ) calculated for these stations. The mean change in slope, Da was 0.12 with 56% of sites showing an increase in slope or positive Da value and 44% having a decrease in slope or negative Da. Sites with Mediterranean climates showed the greatest increase in slope. The magnitude of the change in slope followed some general trends showing a positive correlation with average d 2 H and d 18 O composition and rainfall variability, and negative correlation with period of record (N).Crown
Abstract.Radon is increasingly being used as a tool for quantifying stability influences on urban pollutant concentrations. Bulk radon gradients are ideal for this purpose, since the vertical differencing substantially removes contributions from processes on timescales greater than diurnal and (assuming a constant radon source) gradients are directly related to the intensity of nocturnal mixing. More commonly, however, radon measurements are available only at a single height. In this study we argue that single-height radon observations should not be used quantitatively as an indicator of atmospheric stability without prior conditioning of the time series to remove contributions from larger-scale "nonlocal" processes. We outline a simple technique to obtain an approximation of the diurnal radon gradient signal from a single-height measurement time series, and use it to derive a four category classification scheme for atmospheric stability on a "whole night" basis. A selection of climatological and pollution observations in the Sydney region are then subdivided according to the radon-based scheme on an annual and seasonal basis. We compare the radon-based scheme against a commonly used Pasquill-Gifford (P-G) type stability classification and reveal that the most stable category in the P-G scheme is less selective of the strongly stable nights than the radon-based scheme; this lead to significant underestimation of pollutant concentrations on the most stable nights by the P-G scheme. Lastly, we applied the radon-based classification scheme to mixing height estimates calculated from the diurnal radon accumulation time series, which provided insight to the range of nocturnal mixing depths expected at the site for each of the stability classes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.