Selenium (Se) is an essential micronutrient that exerts multiple and complex effects on human health. Se is essential for human well-being largely due to its potent antioxidant, antiinflammatory, and antiviral properties. The physiological functions of Se are carried out by selenoproteins, in which Se is specifically incorporated as the amino acid, selenocysteine. Importantly, both beneficial and toxic effects of Se have been reported suggesting that the mode of action of Se is strictly chemical form and concentration dependent. Additionally, there is a relatively narrow window between Se deficiency and toxicity and growing evidence suggests that Se health effects depend greatly on the baseline level of this micronutrient. Thus, Se supplementation is not an easy task and requires an individualized approach. It is essential that we continue to explore and better characterize Se containing compounds and mechanisms of action, which could be crucial for disease prevention and treatment. V C 2015 IUBMB Life, 68(2): [97][98][99][100][101][102][103][104][105] 2016
Our understanding of the process of metastatic progression has improved markedly over the past decades, yet metastasis remains the most enigmatic component of cancer pathogenesis. This lack of knowledge has serious health-related implications, since metastasis is responsible for 90% of all cancer-related mortalities. The brain is considered a sanctuary site for metastatic tumor growth, where the blood-brain barrier (BBB) and other components of the brain microenvironment, provide protection to the tumor cells from immune surveillance, chemotherapeutics and other potentially harmful substances. The interactions between tumor cells and the brain microenvironment, principally brain vascular endothelium, are the critical determinants in their progression toward metastasis, dormancy, or clearance. This review discusses current knowledge of the biology of metastatic progression, with a particular focus on the tumor cell migration and colonization in the brain. online address: http://www.molmed.org
The survival rate among children with relapsed neuroblastomas continues to be poor, and thus new therapeutic approaches identified by reliable preclinical drug testing models are urgently needed. Zebrafish are a powerful vertebrate model in preclinical cancer research. Here, we describe a zebrafish neuroblastoma yolk sac model to evaluate efficacy and toxicity of histone deacetylase (HDAC) inhibitor treatments. Larvae were engrafted with fluorescently labeled, genetically diverse, established cell lines and short-term cultures of patient-derived primary cells. Engrafted tumors progressed locally and disseminated remotely in an intact environment. Combination treatments involving the standard chemotherapy doxorubicin and HDAC inhibitors substantially reduced tumor volume, induced tumor cell death, and inhibited tumor cell dissemination to the tail region. Hence, this model allows for fast, cost-efficient, and reliable in vivo evaluation of toxicity and response of the primary and metastatic tumor sites to drug combinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.