Aim: This study aims to evaluate and compare the shear bond strength (SBS) of three different resin cements - total etch and rinse, self-etch and self-adhesive resin cements, used to bond the lithium disilicate restorations to human dentin. Settings and Design: Comparative - Invitro study design. Materials and Methods: Forty-five lithium disilicate (IPS E.max) discs (4 mm in diameter and 3 mm thick) were fabricated and randomly divided into three groups ( n = 15). The occlusal surfaces of 45 extracted human maxillary premolars were ground flat. Fifteen specimens were luted, under a constant load, with each of the following resin cement: Variolink N (Group VN), Multilink N (Group MN), and Multilink Speed (Group MS). All cemented specimens were stored in distilled water for 1-week following which, they were tested under shear loading at a constant crosshead speed of 1 mm/min until fracture on a universal testing machine; the load at fracture was reported in megapascals (MPa) as the bond strength. Fractured specimens were also inspected by the scanning electron microscopy. Statistical analysis of the collected data was performed using one-way ANOVA test, post hoc Bonferroni test, and Chi-square test (α =0.05). Statistical Analysis Used: Oneway ANOVA test and post hoc Bonferroni test. Results: Mean SBS data of the groups in MPa were: Variolink N (Group VN): 14.19 ± 0.76; Multilink N (Group MN): 10.702 ± 0.75; and Multilink Speed (Group MS): 5.462 ± 0.66. Significant differences in SBS ( P < 0.001) of the three resin cement were found. Intergroup comparison revealed statistically significant differences in SBS between Groups VN and MN ( P < 0.001), Groups B and C ( P < 0.001), and Groups VN and MS ( P < 0.001). Chi-square test used to compare the distribution of mode of bond failure among the three groups delineated that the cohesive failure was significantly more among Group VN, whereas adhesive failure was significantly more among Group MN and MS. Conclusion: Total etch and rinse resin cement, i.e., Variolink N (Group VN) produced significantly higher bond strength of all-ceramics to dentin surfaces than did the self-etch and self-adhesive resin cements, i.e., Multilink N and Multilink Speed, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.