An artificial neural network (ANN) is an information processing modelling of the human brain inspired by the way biological nervous systems behave. There are about 100 billion neurons in the human brain. Each neuron has a connection point between 1,000 and 100,000. The key element of this paradigm is the novel structure of the information processing system. In the human brain, information is stored in such a way as to be distributed, and we can extract more than one piece of this information when necessary from our memory in parallel. We are not mistaken when we say that a human brain is made up of thousands of very powerful parallel processors. It is composed of a large number of highly interconnected processing elements (neurons) working in union to solve specific problems. ANN, like people, learns by example. The chapter includes characteristics of artificial neural networks, structure of ANN, elements of artificial neural networks, pros and cons of ANN.
ANN can work the way the human brain works and can learn the way we learn. The neural network is this kind of technology that is not an algorithm; it is a network that has weights on it, and you can adjust the weights so that it learns. You teach it through trials. It is a fact that the neural network can operate and improve its performance after “teaching” it, but it needs to undergo some process of learning to acquire information and be familiar with them. Nowadays, the age of smart devices dominates the technological world, and no one can deny their great value and contributions to mankind. A dramatic rise in the platforms, tools, and applications based on machine learning and artificial intelligence has been seen. These technologies not only impacted software and the internet industry but also other verticals such as healthcare, legal, manufacturing, automobile, and agriculture. The chapter shows the importance of latest technology used in ANN and future trends in ANN.
An artificial neural network (ANN) is an information processing modelling of the human brain inspired by the way biological nervous systems behave. There are about 100 billion neurons in the human brain. Each neuron has a connection point between 1,000 and 100,000. The key element of this paradigm is the novel structure of the information processing system. In the human brain, information is stored in such a way as to be distributed, and we can extract more than one piece of this information when necessary from our memory in parallel. We are not mistaken when we say that a human brain is made up of thousands of very powerful parallel processors. It is composed of a large number of highly interconnected processing elements (neurons) working in union to solve specific problems. ANN, like people, learns by example. The chapter includes characteristics of artificial neural networks, structure of ANN, elements of artificial neural networks, pros and cons of ANN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.