The physical properties of the glass depend on the procedure used to produce the glass. In particular, if the glass is obtained through the variation of external thermodynamic parameters, the specific way in which the parameters are varied (thermodynamic history) has influence on the final properties. In this work, we studied the effect of thermodynamic history on secondary relaxation inside the glassy state on different molecular glass forming, namely, PPGE(poly[(phenyl glycidyl ether)-co-formaldehyde]), 1,18-bis (p methoxyphenyl) cyclohexane (BMPC), poly(propylene glycol)—(PPG400), phenolphthalein-dimethyl-ether(PDE), Poly(vinyl acetate) (PVAc), and poly(bisphenol A-co-epichlorohydrin) glycidyl end-capped (DGEBA). We found secondary relaxation change with thermodynamic history and depends on the value of the activation volume which activation entropy of secondary relaxation inside the glassy state. Also, we found most of the JG secondary relaxation change with thermodynamic history and most of the Non-JG secondary relaxation are not sensitive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.