We study (homogeneous and inhomogeneous) anisotropic Besov spaces associated to expansive dilation matrices A ∈ GL(d, R), with the goal of clarifying when two such matrices induce the same scale of Besov spaces. For this purpose, we first establish that anisotropic Besov spaces have an alternative description as decomposition spaces. This result allows to relate properties of function spaces to combinatorial properties of the underlying coverings. This principle is applied to the question of classifying dilation matrices. It turns out the scales of homogeneous and inhomogeneous Besov spaces differ in the way they depend on the dilation matrix: Two matrices A, B that induce the same scale of homogeneous Besov spaces also induce the same scale of inhomogeneous spaces, but the converse of this statement is generally false. Furthermore, the question whether A, B induce the same scale of homogeneous spaces is closely related to the question whether they induce the same scale of Hardy spaces; the latter question had been previously studied by Bownik. We give a complete characterization of the different types of equivalence in terms of the Jordan normal forms of A, B.
In this paper, Lambert multipliers acting between Orlicz spaces are
characterized based on some properties of conditional expectation operators.
We provide a necessary and sufficient condition for the *-multiplication
operators to have closed range. Finally, a necessary condition for
Fredholmness of these type of operators will be investigated.
In this paper we develop some properties about bounded linear operators. We
investigate relationships between bounded below and norm equivalent
operators. Finally, we study conditions under which those operators become
Fredholmn, Weyl and Browder type operators, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.