The RNA World hypothesis presupposes that abiotic reactions originally produced nucleotides, the monomers of RNA and universal constituents of metabolism. However, compatible prebiotic reactions for the synthesis of complementary (that is, base pairing) nucleotides and mechanisms for their mutual selection within a complex chemical environment have not been reported. Here we show that two plausible prebiotic heterocycles, melamine and barbituric acid, form glycosidic linkages with ribose and ribose-5-phosphate in water to produce nucleosides and nucleotides in good yields. Even without purification, these nucleotides base pair in aqueous solution to create linear supramolecular assemblies containing thousands of ordered nucleotides. Nucleotide anomerization and supramolecular assemblies favour the biologically relevant β-anomer form of these ribonucleotides, revealing abiotic mechanisms by which nucleotide structure and configuration could have been originally favoured. These findings indicate that nucleotide formation and selection may have been robust processes on the prebiotic Earth, if other nucleobases preceded those of extant life.
The RNA World hypothesis is central to many current theories regarding the origin and early evolution of life. However, the formation of RNA by plausible prebiotic reactions remains problematic. Formidable challenges include glycosidic bond formation between ribose and the canonical nucleobases, as well as the inability of nucleosides to mutually select their pairing partners from a complex mixture of other molecules prior to polymerization. Here we report a one-pot model prebiotic reaction between a pyrimidine nucleobase (2,4,6-triaminopyrimidine, TAP) and ribose, which produces TAP-ribose conjugates in high yield (60-90%). When cyanuric acid (CA), a plausible ancestral nucleobase, is mixed with a crude TAP+ribose reaction mixture, micrometer-length supramolecular, noncovalent assemblies are formed. A major product of the TAP+ribose reaction is a β-ribofuranoside of TAP, which we term TARC. This nucleoside is also shown to efficiently form supramolecular assemblies in water by pairing and stacking with CA. These results provide a proof-of-concept system demonstrating that several challenges associated with the prebiotic emergence of RNA, or pre-RNA polymers, may not be as problematic as widely believed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.