Diagnosis and treatment planning forms the crux of orthodontics, which orthodontists gain with years of expertise. Machine Learning (ML), having the ability to learn by pattern recognition, can gain this expertise in a very short duration, ensuring reduced error, inter–intra clinician variability and good accuracy. Thus, the aim of this study was to construct an ML predictive model to predict a broader outline of the orthodontic diagnosis and treatment plan. The sample consisted of 700 case records of orthodontically treated patients in the past ten years. The data were split into a training and a test set. There were 33 input variables and 11 output variables. Four ML predictive model layers with seven algorithms were created. The test set was used to check the efficacy of the ML-predicted treatment plan and compared with that of the decision made by the expert orthodontists. The model showed an overall average accuracy of 84%, with the Decision Tree, Random Forest and XGB classifier algorithms showing the highest accuracy ranging from 87–93%. Yet in their infancy stages, Machine Learning models could become a valuable Clinical Decision Support System in orthodontic diagnosis and treatment planning in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.