Abstract. To construct a WiFi positioning system, dedicated individuals usually gather radio scans with ground truth data. This laborious operation limits the widespread use of WiFi-based locating system. Off-the-shelf smartphones have the capability to scan radio signals from WiFi Access Points (APs). In this paper we propose a scheme to construct a map of WiFi AP positions autonomously without ground truth information. From radio scans, we extract dissimilarities between pairs of WiFi APs, then analyze the dissimilarities to produce a geometric configuration of WiFi APs based on a multidimensional scaling technique. To validate our scheme, we conducted experiments on five floors of an office building that has an area of 50 m by 35 m in each floor. WiFi APs were located within a 10m error range, and floors of APs are recognized without error.
Discovering the location of the mobile nodes carried by people is important issue for many sensor applications. Several localization techniques have been proposed, but human mobility patterns and collaboration between mobile nodes have been seldom considered. In this paper, we propose a mobile node localization system based on collaboration and route information that characterizes human mobility. To validate the feasibility of our approach, the proposed system is implemented and experiments are conducted on real routes and to evaluate various scenarios, simulation experiment was also conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.