In this paper, we describe iterative derivative-free algorithms for multiple roots of a nonlinear equation. Many researchers have evaluated the multiple roots of a nonlinear equation using the first- or second-order derivative of functions. However, calculating the function’s derivative at each iteration is laborious. So, taking this as motivation, we develop second-order algorithms without using the derivatives. The convergence analysis is first carried out for particular values of multiple roots before coming to a general conclusion. According to the Kung–Traub hypothesis, the new algorithms will have optimal convergence since only two functions need to be evaluated at every step. The order of convergence is investigated using Taylor’s series expansion. Moreover, the applicability and comparisons with existing methods are demonstrated on three real-life problems (e.g., Kepler’s, Van der Waals, and continuous-stirred tank reactor problems) and three standard academic problems that contain the root clustering and complex root problems. Finally, we see from the computational outcomes that our approaches use the least amount of processing time compared with the ones already in use. This effectively displays the theoretical conclusions of this study.
<abstract><p>In this paper, a derivative-free one-point iterative technique is proposed, with memory for finding multiple roots of practical problems, such as van der Waals and continuous stirred tank reactor problems, whose multiplicity is unknown in the literature. The new technique has an order of convergence of 1.84 and requires two function evaluations. It can be used as a seed to produce higher-order methods with similar properties, and it increases the efficiency of a similar procedure without memory due to Schröder. After studying its order of convergence, its stability is checked by applying it to the considered problems and comparing with the technique of the same nature for finding multiple roots. The geometrical behavior of the numerical results of the techniques is also studied.</p></abstract>
In the study of systems’ dynamics the presence of symmetry dramatically reduces the complexity, while in chemistry, symmetry plays a central role in the analysis of the structure, bonding, and spectroscopy of molecules. In a more general context, the principle of equivalence, a principle of local symmetry, dictated the dynamics of gravity, of space-time itself. In certain instances, especially in the presence of symmetry, we end up having to deal with an equation with multiple roots. A variety of optimal methods have been proposed in the literature for multiple roots with known multiplicity, all of which need derivative evaluations in the formulations. However, in the literature, optimal methods without derivatives are few. Motivated by this feature, here we present a novel optimal family of fourth-order methods for multiple roots with known multiplicity, which do not use any derivative. The scheme of the new iterative family consists of two steps, namely Traub-Steffensen and Traub-Steffensen-like iterations with weight factor. According to the Kung-Traub hypothesis, the new algorithms satisfy the optimality criterion. Taylor’s series expansion is used to examine order of convergence. We also demonstrate the application of new algorithms to real-life problems, i.e., Van der Waals problem, Manning problem, Planck law radiation problem, and Kepler’s problem. Furthermore, the performance comparisons have shown that the given derivative-free algorithms are competitive with existing optimal fourth-order algorithms that require derivative information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.