Age is the dominant risk factor for most chronic human diseases; yet the mechanisms by which aging confers this risk are largely unknown. 1 Recently, the age-related acquisition of somatic mutations in regenerating hematopoietic stem cell populations leading to clonal expansion was associated with both hematologic cancer 2 – 4 and coronary heart disease 5 , a phenomenon termed ‘Clonal Hematopoiesis of Indeterminate Potential’ (CHIP). 6 Simultaneous germline and somatic whole genome sequence analysis now provides the opportunity to identify root causes of CHIP. Here, we analyze high-coverage whole genome sequences from 97,691 participants of diverse ancestries in the NHLBI TOPMed program and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid, and inflammatory traits specific to different CHIP genes. Association of a genome-wide set of germline genetic variants identified three genetic loci associated with CHIP status, including one locus at TET2 that was African ancestry specific. In silico -informed in vitro evaluation of the TET2 germline locus identified a causal variant that disrupts a TET2 distal enhancer resulting in increased hematopoietic stem cell self-renewal. Overall, we observe that germline genetic variation shapes hematopoietic stem cell function leading to CHIP through mechanisms that are both specific to clonal hematopoiesis and shared mechanisms leading to somatic mutations across tissues.
Large-scale whole genome sequencing (WGS) studies have enabled the analysis of rare variants (RVs) associated with complex phenotypes. Commonly used RV association tests (RVATs) have limited scope to leverage variant functions. We propose STAAR (variant-Set Test for Association using Annotation infoRmation), a scalable and powerful RVAT method that effectively incorporates both variant categories and multiple complementary annotations using a dynamic weighting scheme. For the latter, we introduce “annotation Principal Components”, multi-dimensional summaries of in silico variant annotations. STAAR accounts for population structure and relatedness, and is scalable for analyzing very large cohort and biobank WGS studies of continuous and dichotomous traits. We applied STAAR to identify RVs associated with four lipid traits in 12,316 discovery samples and 17,822 replication samples from the Trans-Omics for Precision Medicine program. We discovered and replicated novel RV associations, including disruptive missense RVs of NPC1L1 and an intergenic region near APOC1P1 associated with low-density lipoprotein cholesterol.
Heritability, the proportion of phenotypic variance explained by genetic factors, can be estimated from pedigree data 1 , but such estimates are uninformative with respect to the underlying genetic architecture. Analyses of data from genome-wide association studies (GWAS) on unrelated individuals have shown that for human traits and disease, approximately one-third to two-thirds of heritability is captured by common SNPs 2-5 . It is not known whether the remaining heritability is due to the imperfect tagging of causal variants by common SNPs, in particular if the causal variants are rare, or other reasons such as overestimation of heritability from pedigree data. Here we show that pedigree heritability for height and body mass index (BMI) appears to be fully recovered from whole-genome sequence (WGS) data on 21,620 unrelated individuals of European ancestry. We assigned 47.1 million genetic variants to groups based upon their minor allele frequencies (MAF) and linkage disequilibrium (LD) with variants nearby, and estimated and partitioned variation accordingly. The estimated heritability was 0.79 (SE 0.09) for height and 0.40 (SE 0.09) for BMI, consistent with pedigree estimates. Low-MAF variants in low LD with neighbouring variants were enriched for heritability, to a greater extent for protein altering variants, consistent with negative selection thereon. Cumulatively variants in the MAF range of 0.0001 to 0.1 explained 0.54 (SE 0.05) and 0.51 (SE 0.11) of heritability for height and BMI, respectively. Our results imply that the still missing heritability of complex traits and disease is accounted for by rare variants, in particular those in regions of low LD.
Fine-mapping to plausible causal variation may be more effective in multi-ancestry cohorts, particularly in the MHC, which has population-specific structure. To enable such studies, we constructed a large ( n = 21,546) HLA reference panel spanning five global populations based on whole-genome sequences. Despite population specific long-range haplotypes, we demonstrated accurate imputation at G-group resolution (94.2%, 93.7%, 97.8% and 93.7% in Admixed African (AA), East Asian (EAS), European (EUR) and Latino (LAT) populations). Applying HLA imputation to genome-wide association study (GWAS) data for HIV-1 viral load in three populations (EUR, AA and LAT), we obviated effects of previously reported associations from population-specific HIV studies and discovered a novel association at position 156 in HLA-B. We pinpointed the MHC association to three amino acid positions (97, 67 and 156) marking three consecutive pockets (C, B and D) within the HLA-B peptide binding groove, explaining 12.9% of trait variance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.