Fine-mapping to plausible causal variation may be more effective in multi-ancestry cohorts, particularly in the MHC, which has population-specific structure. To enable such studies, we constructed a large ( n = 21,546) HLA reference panel spanning five global populations based on whole-genome sequences. Despite population specific long-range haplotypes, we demonstrated accurate imputation at G-group resolution (94.2%, 93.7%, 97.8% and 93.7% in Admixed African (AA), East Asian (EAS), European (EUR) and Latino (LAT) populations). Applying HLA imputation to genome-wide association study (GWAS) data for HIV-1 viral load in three populations (EUR, AA and LAT), we obviated effects of previously reported associations from population-specific HIV studies and discovered a novel association at position 156 in HLA-B. We pinpointed the MHC association to three amino acid positions (97, 67 and 156) marking three consecutive pockets (C, B and D) within the HLA-B peptide binding groove, explaining 12.9% of trait variance.
Defining causal variation by fine-mapping can be more effective in multi-ethnic genetic studies, particularly in regions such as the MHC with highly population-specific structure. To enable such studies, we constructed a large (N=21,546) high resolution HLA reference panel spanning five global populations based on whole-genome sequencing data. Expectedly, we observed unique long-range HLA haplotypes within each population group. Despite this, we demonstrated consistently accurate imputation at G-group resolution (94.2%, 93.7%, 97.8% and 93.7% in Admixed African (AA), East Asian (EAS), European (EUR) and Latino (LAT)). We jointly analyzed genome-wide association studies (GWAS) of HIV-1 viral load from EUR, AA and LAT populations. Our analysis pinpointed the MHC association to three amino acid positions (97, 67 and 156) marking three consecutive pockets (C, B and D) within the HLA-B peptide binding groove, explaining 12.9% of trait variance, and obviating effects of previously reported associations from population-specific HIV studies.
The recent development of imputation methods enabled the prediction of human leukocyte antigen (HLA) alleles from intergenic SNP data, allowing studies to fine-map HLA for immune phenotypes. Here we report an accurate HLA imputation method, CookHLA, which has superior imputation accuracy compared to previous methods. CookHLA differs from other approaches in that it locally embeds prediction markers into highly polymorphic exons to account for exonic variability, and in that it adaptively learns the genetic map within MHC from the data to facilitate imputation. Our benchmarking with real datasets shows that our method achieves high imputation accuracy in a wide range of scenarios, including situations where the reference panel is small or ethnically unmatched.
The human leukocyte antigen (HLA) locus is associated with more human complex diseases than any other locus. In many diseases it explains more heritability than all other known loci combined. Investigators have now demonstrated the accuracy of in silico HLA imputation methods. These approaches enable rapid and accurate estimation of HLA alleles in the millions of individuals that are already genotyped on microarrays. HLA imputation has been used to define causal variation in autoimmune diseases, such as type I diabetes, and infectious diseases, such as HIV infection control. However, there are few guidelines on performing HLA imputation, association testing, and fine-mapping. Here, we present comprehensive statistical genetics guide to impute HLA alleles from genotype data. We provide detailed protocols, including standard quality control measures for input genotyping data and describe options to impute HLA alleles and amino acids including a web-based Michigan Imputation Server. We updated the HLA imputation reference panel representing global populations (African, East Asian, European and Latino) available at the Michigan Imputation Server (n = 20,349) and achived high imputation accuracy (mean dosage correlation r = 0.981). We finally offer best practice recommendations to conduct association tests in order to define the alleles, amino acids, and haplotypes affecting human traits. This protocol will be broadly applicable to the large-scale genotyping data and contribute to defining the role of HLA in human diseases across global populations.
Summary Fine-mapping human leukocyte antigen (HLA) genes involved in disease susceptibility to individual alleles or amino acid residues has been challenging. Using information regarding HLA alleles obtained from HLA typing, HLA imputation, or HLA inference, our software expands the alleles to amino acid sequences using the most recent IMGT/HLA database, and prepares a dataset suitable for fine-mapping analysis. Our software also provides useful functionalities such as various association tests, visualization tools, and nomenclature conversion. Availability https://github.com/WansonChoi/HATK
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.