Most mosquito species must feed on the blood of a vertebrate host to produce eggs. In the yellow fever mosquito, Aedes aegypti, blood feeding triggers medial neurosecretory cells in the brain to release insulin-like peptides (ILPs) and ovary ecdysteroidogenic hormone (OEH). Theses hormones thereafter directly induce the ovaries to produce ecdysteroid hormone (ECD), which activates the synthesis of yolk proteins in the fat body for uptake by oocytes. ILP3 stimulates ECD production by binding to the mosquito insulin receptor (MIR). In contrast, little is known about the mode of action of OEH, which is a member of a neuropeptide family called neuroparsin. Here we report that OEH is the only neuroparsin family member present in the Ae. aegypti genome and that other mosquitoes also encode only one neuroparsin gene. Immunoblotting experiments suggested that the full-length form of the peptide, which we call long OEH (lOEH), is processed into short OEH (sOEH). The importance of processing, however, remained unclear because a recombinant form of lOEH (rlOEH) and synthetic sOEH exhibited very similar biological activity. A series of experiments indicated that neither rlOEH nor sOEH bound to ILP3 or the MIR. Signaling studies further showed that ILP3 activated the MIR but rlOEH did not, yet both neuropeptides activated Akt, which is a marker for insulin pathway signaling. Our results also indicated that activation of TOR signaling in the ovaries required co-stimulation by amino acids and either ILP3 or rlOEH. Overall, we conclude that OEH activates the insulin signaling pathway independently of the MIR, and that insulin and TOR signaling in the ovaries is coupled.
SUMMARYThe rockpool mosquito, Georgecraigius atropalpus, is a facultatively autogenous species that produces its first egg clutch without a blood meal shortly after emergence. Several days after depositing this clutch, females must take a blood meal to produce a second egg clutch. Decapitation of females shortly after emergence or blood ingestion prevents egg maturation. Here, we report that a single injected dose of the neuropeptide ovary ecdysteroidogenic hormone (OEH) fully restored egg maturation in decapitated females in both circumstances. This neuropeptide and two insulin-like peptides (ILPs) are potent gonadotropins in the related yellow fever mosquito, Aedes aegypti. ILP3 was marginally restorative in decapitated G. atropalpus, and ILP4 had no effect. Egg maturation in non-and blood-fed G. atropalpus was dependent on the enzymatic mobilization of amino acids from stored protein or the blood meal for yolk protein (vitellogenin, VG) synthesis and uptake by oocytes. We further show that OEH stimulates serine protease activity in the fat body of newly eclosed females or in the midgut of blood-fed ones, and ecdysteroid hormone production by the ovaries of both females. In contrast, only 20-hydroxyecdysone stimulated VG synthesis in the fat body of non-and blood-fed females. Using RNA interference to knock down expression of the insulin receptor, we found that OEH still fully restored autogenous egg maturation. In summary, our results identify OEH as a primary regulator of egg maturation in both autogenous and blood-fed G. atropalpus females and suggest the shift from blood meal-dependent to blood meal-independent release of OEH is a key factor in the evolution of autogeny in this species.
SUMMARYInsect pathogens and parasites often affect the growth and development of their hosts, but understanding of these processes is fragmentary. Among the most species-rich and important mortality agents of insects are parasitoid wasps that carry symbiotic polydnaviruses (PDVs). Like many PDV-carrying wasps, Microplitis demolitor inhibits growth and pupation of its lepidopteran host, Pseudoplusia includens, by causing host hemolymph juvenile hormone (JH) titers to remain elevated and preventing ecdysteroid titers from rising. Here we report these alterations only occurred if P. includens was parasitized prior to achieving critical weight, and were fully mimicked by infection with only M. demolitor bracovirus (MdBV). Metabolic assays revealed that MdBV infection of pre-critical weight larvae caused a rapid and persistent state of hyperglycemia and reduced nutrient stores. In vitro ecdysteroid assays further indicated that prothoracic glands from larvae infected prior to achieving critical weight remained in a refractory state of ecdysteroid release, whereas infection of post-critical weight larvae had little or no effect on ecdysteroid release by prothoracic glands. Taken together, our results suggest MdBV causes alterations in metabolic physiology, which prevent the host from achieving critical weight. This in turn inhibits the endocrine events that normally trigger metamorphosis.
Inhibition of the host melanization reaction, activated by the prophenoloxidase activating (proPO) system, is one of the crucial evasion strategies of pathogens. Recently, the shrimp pathogen, white spot syndrome virus (WSSV), was found to inhibit melanization in the shrimp Penaeus monodon. The viral protein WSSV453 was previously shown to interact with PO-activating enzyme 2 (PmPPAE2) and reported to be involved in suppressing the shrimp melanization response after WSSV infection. Here, we characterized how WSSV453 inhibits melanization. WSSV453 is a non-structural viral protein, which was first detected in shrimp haemocytes at 6 hours post-infection (hpi) by WSSV and in shrimp plasma at 24 hpi. We produced recombinant proteins for three components of the P. monodon proPO system: PmproPPAE2, PmproPO1 and PmproPO2. Functional assays showed that active PmPPAE2 processed PmproPO1 and 2 to produce functional PO. Incubation of WSSV453 with PmproPPAE2 dose-dependently reduced PmPPAE2 activity toward PmPO1 or PmPO2. In contrast, WSSV453 had no effect on activated PmPPAE2. The addition of active PmPPAE2 to WSSV-infected shrimp plasma at day 2 post-infection also rescued PO activity. Taken together, these results indicate that the anti-melanization activity of WSSV is due to WSSV453, which interacts with PmproPPAE2 and interferes with its activation to active PmPPAE2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.