Owing to the rapid growth of mobile and electronic equipment miniaturization technology, the supply of micro mobile computing machine has been fast raised. Accordingly they have performed many researches on energy harvesting technology to provide promising power supply equipment to substitute existing batteries. In this paper, in order to have low resonance frequency for piezoelectric energy harvester, we have tried to make it larger than before by adopting nickel that has much higher density than silicon. We have applied it for our energy harvesting actuator instead of the existing silicon based actuator. Through such new concept and approach, we have designed energy harvesting device and made it personally by making with micromachining process. The energy harvester structure has a cantilever type and has a dimension of 10×2.5×0.1 mm 3 for length, width and thickness respectively. Its electrode type is formed by using Au/Ti of interdigitate d33 mode. The pattern size and gap size is 50 μm. Based on the measurement of the nickel-based piezoelectric energy harvester, it is found to have 778 Hz for a resonant frequency with no proof mass. In that resonance frequency we could get a maximum output power of 76 μW at 4.8 MΩ being applied with 1 g acceleration.
Recently as the electronic devices are getting to be more and more smaller, transformers are needed to be micro fabricated using MEMS technology. In this paper transformers have been fabricated and measured by depositing insulation layer to reduce the loss of eddy current and in the middle core a high permeability permalloy was designed based on the turns ratio between primary coil and secondary coil which are 1:1 transformers. (the number of turns of primary coil and secondary coil: 3/3, 5/5, 7/7). The size of the transformers including ground shield are 1 mm ⨯ 1.5 mm, 1 mm ⨯ 1.95 mm, 1 mm ⨯ 2.35 mm respectively. The line width, pitch and the height of post are 50um. Based on the measured data from the micro fabricated transformers, the 3/3 turns in the primary coil and secondary coil showed the lowest insertion loss with 1.5 dB at 480 MHz and the 7/7 turns in the primary coil and secondary coil showed the highest insertion loss with 2.5 dB at 280 MHz. Also confirmed that the bandwidth goes up as the number of turns goes down. There was some difference between the actual measured data and the HFSS simulation result. It looks as if it is an error of the difference between oxidation of copper or the permeability of SU-8.
As the demands for the higher data transmission speed and capacity as well as integration density grow throughout the network, much works have being done in order to integrate the Electrical PCB with Optical PCB. However, one of the most troublesome problems in the commercial bonding process is to need the high temperature for the bonding. Due to the high temperature bonding process, lots of side problems are followed such as warpage and crack, etc. In this paper, we tried to develop the new bonding technology with low temperature around 100℃. As a result of this study, the PCB bonding technology with high bonding strength is demonstrated with the value of bonding strength from 7 to 8 MPa at the temperature of 100℃.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.