Movements of the upper and lower limb muscles during five common gardening tasks were analyzed by using electromyography (EMG). Twenty adults aged in their twenties (mean age, 24.8 卤 2.4 years) were recruited. On two separate occasions, subjects visited a garden plot to perform digging, raking, troweling, weeding, and hoeing; all tasks were performed three times with 20 s intervals for each trial. To measure muscle activation during the five gardening tasks, surface EMG was used. Bipolar surface EMG electrodes were attached to eight upper limb muscles (bilateral anterior deltoid, biceps brachialis, brachioradialis, and flexor carpi ulnaris) or eight lower limb muscles (bilateral vastus lateralis, vastus medialis, biceps femoris, and gastrocnemius) on both sides of the body, for a total of 16 muscles. During the five tasks, photographs were taken of movement phases using a digital video camera. The right flexor carpi ulnaris and brachioradialis showed higher activation than the other upper and lower limb muscles measured during the tasks. All 16 upper and lower limb muscles were actively used only during digging. According to movement analysis of each activity, digging was classified into four movement phases, whereas raking, troweling, weeding, and hoeing each were divided into three movement phases. In each activity, there were high-impact phases in terms of muscle activation; the flexor carpi ulnaris and brachioradialis were identified as major muscles in each impact phase. This analysis may be used to generate biomechanical profiles of gardening tasks for practitioners when designing efficient gardening interventions for physical health or rehabilitation.
The purpose of this study was to provide data to increase the success rate of penalty kicks through quantifying the shape of skilled kicks by performing a kinematic analysis on the change of movement during the kicking phase which the goalkeeper uses as a vital clue. Three high definition video cameras(GR-HD1KR, JVC, Japan) were used for the study and 18 reflective markers were attached to the body joints. Corners of the goal, difficult for goalkeepers to block, were set as aims and 1 m by 1.2 m targets were installed. Each subject had five sets of kicks at random, and the analysis was done on the movements that hit the target. Time, speed of the right lower limb's center of mass, joint angle, and angular velocity were chosen as factors and the results of the analysis showed statistical significance. The player taking a penalty kick should train to avoid leaning one's body towards the kicking direction and change the angle of the right foot right before the impact to decide the direction of the ball. The goalkeeper can increase the save success rate by studying the angle of the kicker's body and the right foot as well as the timing of the kick.
Objective : The purpose of this study was to analyze the correlation between physical factors (X-factor, X-factor stretch) and club factors (club speed, ball speed, club path, smash factor, vertical launch angle, spin rate, flight time, total length) during impact and it affect on the total distance of the ball during a golf driver swing.Background : There were not enough studies that analyzed the correlation between physical factors(X-factor, X-factor stretch) and club factors(club speed, ball speed, club path, smash factor, launch angle, spin rate, flight time, total length) during a purpose swing to increase total distance.Method : For this study, 9 right handed professional male golfers (KPGA) were chosen. The test subject group used their own drivers and each took a total of 10 swings. These swings consisted of 5 purpose swings to increase total distance and 5 normal swings. Results: The purpose swing to increase total distance showed larger physical factors(X-factor, X-factor stretch) compared to a normal swing however the results were not statistically significant. Total distance increased during a purpose swing as a result of ball and club speed. Conclusion :The results showed that club factors, ball speed and club speed contributed the most in affecting the total distance of the ball during a purpose swing.
The purpose of this study was to investigate the difference of kinematic factors acting in the body during a normal swing and a swing taken with an intention to increase driving distance by female pro golfers. Female pro golfers may increase driver clubhead speed and improve driving distance through maintaining a large X-factor angle during backswing and delaying the uncocking period by rapidly shifting the weight to the left foot during downswing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.