Encapsulation of islets of Langerhans may represent a way to transplant islets in the absence of immunosuppression. Traditional methods for encapsulation lead to diffusional limitations imposed by the size of the capsules (600-1,000 μm in diameter), which results in core hypoxia and delayed insulin secretion in response to glucose. Moreover, the large volume of encapsulated cells does not allow implantation in sites that might be more favorable to islet cell engraftment. To address these issues, we have developed an encapsulation method that allows conformal coating of islets through microfluidics and minimizes capsule size and graft volume. In this method, capsule thickness, rather than capsule diameter, is constant and tightly defined by the microdevice geometry and the rheological properties of the immiscible fluids used for encapsulation within the microfluidic system. We have optimized the method both computationally and experimentally, and found that conformal coating allows for complete encapsulation of islets with a thin (a few tens of micrometers) continuous layer of hydrogel. Both in vitro and in vivo in syngeneic murine models of islet transplantation, the function of conformally coated islets was not compromised by encapsulation and was comparable to that of unencapsulated islets. We have further demonstrated that the structural support conferred by the coating materials protected islets from the loss of function experienced by uncoated islets during ex vivo culture.cell encapsulation | polyethylene glycol | alginate | cell transplantation
STEM CELLS 2007;25: 3155-3164 Disclosure of potential conflicts of interest is found at the end of this article.
Islet transplantation is a promising therapy for Type 1 diabetes mellitus; however, host inflammatory and immune responses lead to islet dysfunction and destruction, despite potent systemic immunosuppression. Grafting of poly(ethylene glycol) (PEG) to the periphery of cells or tissues can mitigate inflammation and immune recognition via generation of a steric barrier. Herein, we sought to evaluate the complementary impact of islet PEGylation with a short-course immunotherapy on the survival of fully-MHC mismatched islet allografts (DBA/2 islets into diabetic C57BL/6J recipients). Anti-Lymphocyte Function-associated Antigen 1 (LFA-1) antibody was selected as a complementary, transient, systemic immune monotherapy. Islets were PEGylated via an optimized protocol, with resulting islets exhibiting robust cell viability and function. Following transplantation, a significant subset of diabetic animals receiving PEGylated islets (60%) or anti-LFA-1 antibody (50%) exhibited long-term (> 100 d) normoglycemia. The combinatorial approach proved synergistic, with 78% of the grafts exhibiting euglycemia longterm. Additional studies examining graft cellular infiltrates at early time points characterized the local impact of the transplant protocol on graft survival. Results illustrate the capacity of a simple polymer grafting approach to impart significant immunoprotective effects via modulation of the local transplant environment, while short-term immunotherapy serves to complement this effect.
Clinical islet transplantation (CIT), the infusion of allogeneic islets within the liver, has the potential to provide precise and sustainable control of blood glucose levels for the treatment of type 1 diabetes. The success and long-term outcomes of CIT, however, are limited by obstacles such as a nonoptimal transplantation site and severe inflammatory and immunological responses to the transplant. Tissue engineering strategies are poised to combat these challenges. In this review, emerging methods for engineering an optimal islet transplantation site, as well as novel approaches for improving islet cell encapsulation, are discussed.
Clinical islet transplantation (CIT) has emerged as a promising treatment option for type 1 diabetes mellitus (T1DM); however, the anti-rejection drug regimen necessary to mitigate allograft islet rejection is undesirable. The use of polymeric coatings to immunocamouflage the transplant from host immune attack has great potential. We have recently developed alginate and poly(ethylene glycol) (PEG)-based polymers, functionalized with azide and phosphine, respectively, which form spontaneous and chemoselective crosslinks via the bioorthogonal Staudinger ligation scheme. Herein, we explored the utility of these polymers to form immunoprotective, ultrathin coatings on murine primary pancreatic islets. Resulting coatings were nontoxic, with unimpaired glucose stimulated insulin secretion. Transplantation of coated BALB/c (H-2 d ) islets into streptozotozin-induced diabetic C57BL/6 (H-2 b ) resulted in prompt achievement of normoglycemia, at a rate comparable to controls. A significant subset of animals receiving coated islets (57%) exhibited long-term (> 100 d) function, with robust islets observed upon explantation. Control islets rejected after 15 d (+/− 9 d). Results illustrate the capacity of chemoselectively functionalized polymers to form coatings on islets, imparting no detrimental effect to the underlying cells, with resulting coatings exhibiting significant protective effects in an allograft murine model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.