The prevalent model for the generation of axial polarity in mouse embryos proposes that a radial to a linear transition in the expression of primitive streak markers precedes the formation of the primitive streak on one side of the epiblast. This model contrasts with the models of mesoderm formation in other vertebrates as it suggests that the primitive streak is initially established in a radial pattern rather than a localized region of the epiblast. Here, we examine the proposed correlation between the expression of Brachyury and Wnt3, two genes reported as expressed radially in the proximal epiblast, with the movements of proximal anterior epiblast cells at stages leading to the formation of the primitive streak. Our results reveal that neither Brachyury nor Wnt3 forms a ring of expression in the proximal epiblast as previously thought. In embryos dissected between 5.5 and 6.5 dpc, Brachyury is first expressed in the distal extra-embryonic ectoderm and subsequently on one side of the epiblast. Wnt3 expression is evident first in the posterior visceral endoderm of 5.5 dpc embryos and later in the posterior epiblast. Lineage analysis shows that the movements of the proximal epiblast do not restrict Brachyury expression to the posterior epiblast. Our data suggest a model whereby the localized expression of these genes in the posterior epiblast, and hence the formation of the primitive streak, is the result of local cell-cell interactions in the future posterior portion of the egg cylinder rather than regionalization of a radial pattern of expression in proximal epiblast cells.
The small RNA payload of mammalian sperm undergoes dramatic remodeling during development, as several waves of microRNAs and tRNA fragments are shipped to sperm during post-testicular maturation in the epididymis. Here, we take advantage of this developmental process to probe the function of the sperm RNA payload in preimplantation development. We generated zygotes via intracytoplasmic sperm injection (ICSI) using sperm obtained from the proximal (caput) versus distal (cauda) epididymis and then characterized the development of the resulting embryos. Embryos generated using caput sperm significantly overexpress multiple regulatory factors throughout preimplantation development, subsequently implant inefficiently, and fail soon after implantation. Remarkably, microinjection of purified cauda-specific small RNAs into caput-derived embryos not only completely rescued preimplantation molecular defects but also suppressed the post-implantation embryonic lethality phenotype. These findings reveal an essential role for small RNA remodeling during post-testicular maturation of mammalian sperm and identify a specific preimplantation gene expression program responsive to sperm-delivered microRNAs.
CRISPR-Cas9 genome editing has transformed biotechnology and therapeutics. However, in vivo applications of some Cas9s are hindered by large size (limiting delivery by adeno-associated virus [AAV] vectors), off-target editing, or complex protospaceradjacent motifs (PAMs) that restrict the density of recognition sequences in target DNA. Here, we exploited natural variation in the PAM-interacting domains (PIDs) of closely related Cas9s to identify a compact ortholog from Neisseria meningitidis-Nme2Cas9-that recognizes a simple dinucleotide PAM (N 4 CC) that provides for high target site density. All-in-one AAV delivery of Nme2Cas9 with a guide RNA targeting Pcsk9 in adult mouse liver produces efficient genome editing and reduced serum cholesterol with exceptionally high specificity. We further expand our single-AAV platform to pre-implanted zygotes for streamlined generation of genome-edited mice. Nme2Cas9 combines all-in-one AAV compatibility, exceptional editing accuracy within cells, and high target site density for in vivo genome editing applications.
Aurora-A is a conserved kinase implicated in mitotic regulation and carcinogenesis. Aurora-A was previously implicated in mitotic entry and spindle assembly, although contradictory results prevented a clear understanding of the roles of Aurora-A in mammals. We developed a conditional null mutation in the mouse Aurora-A gene to investigate Aurora-A functions in primary cells ex vivo and in vivo. We show here that conditional Aurora-A ablation in cultured embryonic fibroblasts causes impaired mitotic entry and mitotic arrest with a profound defect in bipolar spindle formation. Germ line Aurora-A deficiency causes embryonic death at the blastocyst stage with pronounced cell proliferation failure, mitotic arrest, and monopolar spindle formation. Aurora-A deletion in mid-gestation embryos causes an increase in mitotic and apoptotic cells. These results indicate that murine Aurora-A facilitates, but is not absolutely required for, mitotic entry in murine embryonic fibroblasts and is essential for centrosome separation and bipolar spindle formation in vitro and in vivo. Aurora-A deletion increases apoptosis, suggesting that molecular therapies targeting Aurora-A may be effective in inducing tumor cell apoptosis. Aurora-A conditional mutant mice provide a valuable system for further defining Aurora-A functions and for predicting effects of Aurora-A therapeutic intervention.
Several lines of evidence suggest that the extraembryonic endoderm of vertebrate embryos plays an important role in the development of rostral neural structures. In mice, neural inductive signals are thought to reside in an area of visceral endoderm that expresses the Hex gene. Here, we have conducted a morphological and lineage analysis of visceral endoderm cells spanning pre- and postprimitive streak stages. Our results show that Hex-expressing cells have a tall, columnar epithelial morphology, which distinguishes them from other visceral endoderm cells. This region of visceral endoderm thickening (VET) is found overlying first the distal and then one side of the epiblast at stages between 5.5 and 5.75 days post coitum (d.p.c.). In addition, we show that the epiblast has an anteroposterior-compressed appearance that is aligned with the position of the VET. Intracellular labeling of VET/Hex-expressing cells reveals an anterior and anterolateral shift from their distal epiblast position. VET/Hex-expressing cells are first localized to the anterior side of the epiblast by 5.75 d.p.c. and form a crescent on the anterior half of the embryo at the onset of gastrulation. Subsequently, VET descendants are distributed along the embryonic/extraembryonic boundary by headfold stages at 7.5 d.p.c. The morphological characteristics and position of VET/Hex-expressing cells distinguishes the future anteroposterior axis of the embryo and provide landmarks to stage mouse embryos at preprimitive streak stages. Moreover, the morphological characteristics of pregastrulation mouse embryos together with the stereotyped shift in the position of visceral endoderm cells reveal similarities among amniote embryos that suggest an evolutionary conservation of the mechanisms that pattern the rostral neurectoderm at pregastrula stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.