Ethnographers have ably documented the great extent and diversity of social institutions that contemporary fishers and shellfishers employ to collectively manage common property resources. However, the collective action regimes developed among ancient maritime societies remain understudied by archaeologists. We summarize research into the development and form of collective action among the maritime societies of the western peninsular coast of Florida, USA, drawing on our own recent work in the Tampa Bay area and previous work elsewhere in the region, especially the Calusa area to the south. Archaeological evidence suggests that collective action became more important in Tampa Bay in the first centuries CE, probably owing to a marine transgression that resulted in more productive estuaries. Groups here staked claims to productive estuarine locations through the founding of villages, the building of mounds, and the construction of relatively simple marine enclosures. Historically, these changes resulted in societies of relatively small scale and limited authoritarian government. In contrast, collective action developed later in the Calusa area, may have begun in relation to resource scarcity than plenty, and may been founded in kinship rather than in public ritual. Collective action in the Calusa area resulted in projects of greater scale and complexity, providing a foundation for more hierarchical and authoritarian social formations.
We present digital documentation of the Cockroach Key archaeological site in Tampa Bay on the western coast of Florida, USA. The site consists of a mound and midden complex constructed by Native Americans between around 100 and 900 CE. Although well known to antiquarians of the 1800s and archaeologists of the early 1900s, the site has slowly become “hidden in plain sight” to both archaeologists (owing to the lack of contemporary investigations) and the public (owing to the density of vegetation). We use LiDAR-based mapping and ground-penetrating radar to document the site’s surface and subsurface features.
The Florida Horse Conch, Triplofusus giganteus, one of the largest marine gastropods in the world, has been intensely exploited by shell collectors, curio dealers, and commercial harvest for over a century and is now in decline. Effective management of horse conch populations requires better data on commercial and recreational harvest intensities but also on the species’ intrinsic capacity to recover. Here, we use stable oxygen and carbon isotope sclerochronology to investigate the horse conch’s life history, including its maximum life span, growth rates, age at first spawning, and number of lifetime spawning seasons. The largest two shells studied (460 and 475 mm linear shell length) grew for 13 and 11 years, respectively. Growth curves for these shells, extrapolated out to the length of the record size shell (606 mm linear shell length) predict a maximum age of just 16 years. Carbon isotopes and field photographs of spawning females suggest that females mature relatively late in life. However, the largest horse conchs remaining in the wild are also smaller and younger than those studied here. Thus, the largest females left in the wild could have few lifetime spawning events. High fecundity can buffer horse conchs from overfishing but only if females reach spawning age and reproductive-age females are protected. Our study highlights the usefulness of stable isotope sclerochronology for characterizing the life histories of molluscan species now too uncommon to study through traditional mark and recapture approaches.
Ground-penetrating radar (GPR) and terrestrial laser scanning (TLS) surveys were conducted at a historic cemetery at Cape Canaveral Air Force Station, Florida, U.S., in order to confirm the presence of burials corresponding to grave markers and detect potential unmarked burials. Noise in the GPR data from surface features and subtle terrain differences must be addressed to determine the extent of anomalies of interest. We use singular value decomposition (SVD) to isolate and remove energy from GPR data. SVD allows one to remove unwanted signals that traditional processing techniques cannot. With SVD filtering, we resolve an anomaly adjacent to confirmed burials otherwise overprinted by unwanted signal. The migration of SVD-filtered data produces more distinct, spatially constrained point reflectors. Ground elevation is derived from georeferenced TLS data and compared to that from airborne laser scanning (ALS) to highlight subtle terrain that can assist data interpretation. TLS elevations show a subtle modern mound over the burial plot where ALS elevations show a depression. The targets of interest are approximately 20–30 cm higher in elevation if a topographic correction is performed using TLS versus ALS. In archaeological applications, a notable change is often recorded at the sub-meter scale. The combined approach presented here better resolves geophysical response of buried features and their positions in the ground relative to each other.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.