This paper describes the use of the double cantilever beam (DCB) method for characterizing the adhesion strength of interfaces in advanced microelectronic packages at room and high temperatures. Those interfaces include silicon–epoxy underfill, solder resist–epoxy underfill and epoxy mold compounds (EMCs), and die passivation materials–epoxy underfill materials. A unique sample preparation technique was developed for DCB testing of each interface in order to avoid the testing challenges specific to that interface—for example, silicon cracking and voiding in silicon–underfill samples and cracking of solder resist films in solder resist–underfill samples. An asymmetric DCB configuration (i.e., different cantilever beam thickness on top compared to the bottom) was found to be more effective in maintaining the crack at the interface of interest and in reducing the occurrence of cohesive cracking when compared to symmetric DCB samples. Furthermore, in order to characterize the adhesion strength of those interfaces at elevated temperatures seen during package assembly and end-user testing, an environmental chamber was designed and fabricated to rapidly and uniformly heat the DCB samples for testing at high temperatures. This chamber was used to successfully measure the adhesion strength of silicon–epoxy underfill samples at temperatures up to 260 °C, which is the typical maximum temperature experienced by electronic packages during solder reflow. For the epoxy underfills tested in this study, the DCB samples failed cohesively within the underfill at room temperature but started failing adhesively at temperatures near 150 °C. Adhesion strength measurements also showed a clear degradation with temperature. Several other case studies using DCB for material selection and assembly process optimization are also discussed. Finally, fractography results of the fractured surfaces are presented for better understanding of the failure mode.
The factors causing a fire in the operating room are discussed and suggestions made for prevention of this complication.
Advanced microelectronic packages utilize a multitude of materials with dramatically different mechanical properties. Delamination occurring at the interfaces between these materials, due to poor adhesion and/or moisture exposure, is an important failure mode affecting the thermomechanical reliability of the package. The adhesion strength of these interfaces is a critical mechanical property that plays a role in the reliability performance of these packages. A good adhesion strength metrology is required to perform material selection and enable assembly process optimization in order to avoid the need for expensive assembly builds, followed by reliability testing which leads to long development times. This paper discusses the use of the Double Cantilever Beam (DCB) method for characterizing the adhesion strength of interfaces in advanced microelectronic packages at both room and high temperatures. Previous work in this area was focused only on room temperature testing. However, in order to characterize the adhesion strength of these interfaces at elevated temperatures seen during package assembly and reliability testing, an environmental chamber was designed and fabricated to rapidly and uniformly heat the DCB samples for testing at high temperatures. Depending on the interface tested and the testing temperature, DCB samples failed in one of three fail modes: (1) adhesive (at the interface), (2) cohesive (within the adhesive layer), and (3) brittle cracking of the substrate. Two case studies describing high temperature DCB testing on silicon-capillary underfill samples are presented. With adhesive failure being the desired fail mode in order to rank order materials and processes, it was found that for the underfills tested in this study, the DCB samples failed cohesively within the underfill at room temperature but started failing adhesively at temperatures near 150°C. Adhesion strength also showed a clear degradation with temperature. It is suspected that the change in failure mode from cohesive to adhesive with increasing temperature is due to competing trends of degradation in cohesive strength of the underfill versus degradation in adhesive strength of the interface with temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.