It is now widely understood that all animals engage in complex interactions with bacteria (or microbes) throughout their various life stages. This ancient exchange can involve cooperation and has resulted in a wide range of evolved host-microbial interdependencies, including those observed in the gut. Ciona intestinalis, a filter-feeding basal chordate and classic developmental model that can be experimentally manipulated, is being employed to help define these relationships. Ciona larvae are first exposed internally to microbes upon the initiation of feeding in metamorphosed individuals; however, whether or not these microbes subsequently colonize the gut and whether or not Ciona forms relationships with specific bacteria in the gut remains unknown. In this report, we show that the Ciona gut not only is colonized by a complex community of bacteria, but also that samples from three geographically isolated populations reveal striking similarity in abundant operational taxonomic units (OTUs) consistent with the selection of a core community by the gut ecosystem.
BACKGROUND: Exogenous surfactants to treat respiratory distress syndrome (RDS) are approved for tracheal instillation only; this requires intubation, often followed by positive pressure ventilation to promote distribution. Aerosol delivery offers a safer alternative, but clinical studies have had mixed results. We hypothesized that efficient aerosolization of a surfactant with low viscosity, early in the course of RDS, could reduce the need for intubation and instillation of liquid surfactant. METHODS: A prospective, multicenter, randomized, unblinded comparison trial of aerosolized calfactant (Infasurf) in newborns with signs of RDS that required noninvasive respiratory support. Calfactant was aerosolized by using a Solarys nebulizer modified with a pacifier adapter; 6 mL/kg (210 mg phospholipid/kg body weight) were delivered directly into the mouth. Infants in the aerosol group received up to 3 treatments, at least 4 hours apart. Infants in the control group received usual care, determined by providers. Infants were intubated and given instilled surfactant for persistent or worsening respiratory distress, at their providers’ discretion. RESULTS: Among 22 NICUs, 457 infants were enrolled; gestation 23 to 41 (median 33) weeks and birth weight 595 to 4802 (median 1960) grams. In total, 230 infants were randomly assigned to aerosol; 225 received 334 treatments, starting at a median of 5 hours. The rates of intubation for surfactant instillation were 26% in the aerosol group and 50% in the usual care group (P < .0001). Respiratory outcomes up to 28 days of age were no different. CONCLUSIONS: In newborns with early, mild to moderate respiratory distress, aerosolized calfactant at a dose of 210 mg phospholipid/kg body weight reduced intubation and surfactant instillation by nearly one-half.
Complex symbiotic interactions at the surface of host epithelia govern most encounters between host and microbe. The epithelium of the gut is a physiologically ancient structure that is comprised of a single layer of cells and is thought to possess fully developed immunological capabilities. Ciona intestinalis (sea squirt), which is a descendant of the last common ancestor of all vertebrates, is a potentially valuable model for studying barrier defenses and gut microbial immune interactions. A variety of innate immunological phenomena have been well characterized in Ciona, of which many are active in the gut tissues. Interactions with gut microbiota likely involve surface epithelium, secreted immune molecules including variable region-containing chitin-binding proteins, and hemocytes from a densely populated laminar tissue space. The microbial composition of representative gut luminal contents has been characterized by molecular screening and a potentially relevant, reproducible, dysbiosis can be induced via starvation. The dialog between host and microbe in the gut can be investigated in Ciona against the background of a competent innate immune system and in the absence of the integral elements and processes that are characteristic of vertebrate adaptive immunity.
BackgroundWe have shown previously that enteral administration of 2, 4, 6-trinitrobenzene sulfonic acid in 10-day-old C57BL/6 pups produces an acute necrotizing enterocolitis with histopathological and inflammatory changes similar to human necrotizing enterocolitis (NEC). To determine whether murine neonatal TNBS-mediated intestinal injury could be used as a NEC model, we compared gene expression profiles of TNBS-mediated intestinal injury and NEC.MethodsWhole genome microarray analysis was performed on proximal colon from control and TNBS-treated pups (n=8/group). For comparison, we downloaded human microarray data of NEC (n=5) and surgical control (n=4) from a public database. Data were analyzed using the software programs Partek Genomics Suite and Ingenuity Pathway Analysis.ResultsWe detected extensive changes in gene expression in murine TNBS-mediated intestinal injury and human NEC. Using fold-change cut-offs of ±1.5, we identified 4440 differentially-expressed genes (DEGs) in murine TNBS-mediated injury and 1377 in NEC. Murine TNBS-mediated injury and NEC produced similar changes in expression of orthologous genes (r = 0.611, p<0.001), and also activated nearly-identical biological processes and pathways. Lipopolysaccharide was top predicted upstream regulator in both the murine and human datasets.ConclusionsMurine neonatal TNBS-mediated enterocolitis and human NEC activate nearly-identical biological processes, signaling pathways, and transcriptional networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.