Management and orchestration of virtual resources and functions, commonly referred to as MANO, are key functionalities of Network Function Virtualization (NFV) environments. This paper describes the design and deployment of the NFV MANO platform of 5TONIC, the open research and innovation laboratory on 5G technologies founded by Telefonica and IMDEA Networks. This NFV MANO platform provides 5TONIC trials and experiments with access to a functional production-like NFV environment, enabling experimentation with novel NFV products and services. As a relevant feature, the platform is capable of incorporating external sites to complement the portfolio of software and hardware resources that can be made available for experimentation activities. The 5TONIC MANO platform has been designed and built using open-source technologies. The research carried out during its design and deployment has resulted in a contribution already made to its upstream projects, regarding the automated configuration of virtualized network functions. Finally, we explored the scalability properties of the 5TONIC MANO platform, and we experimentally validated its functional capacity to orchestrate multi-site experiments.
In this paper, we explore the strong potential of Network Function Virtualization (NFV) technologies to enable multi-mission small unmanned aircraft systems. In this context, we analyze the main challenges of using NFV technologies in this emergent field, and we present the design of an NFV system that supports the flexible, automated and cost-effective deployment of network services over small unmanned aerial vehicles. To validate our design, we implemented its most relevant components with open-source technologies, using this first prototype of the system to carry out a set of preliminary experiments that showcase its feasibility and functionality.
The fifth generation (5G) of mobile networks will have to accommodate different types of use cases, each of them with different and stringent requirements and key performance indicators (KPIs). To support this, apart from novel technologies such as network slicing or artificial intelligence, 5G will require a flexible and efficient monitoring system. The collected metrics serve to optimize the performance of the network, and to confirm the achievement of the KPIs. Furthermore, in the envisioned multi-site, multi-stakeholder scenarios, having a common monitoring system is even more critical for an efficient optimization and service provisioning. In this paper, we present a Monitoring architecture for the distribution and consumption of metrics and KPIs for 5G multi-site platforms, where different verticals from different stakeholders are implemented over a shared infrastructure. We also assess the performance of the implemented publish-subscribe paradigm, to confirm that it suits the requirements of these scenarios, and discuss how the architecture could be mapped to other 5G scenarios.
SUMMARYDuring these last years the Internet Protocol Television (IPTV) service and the different peer-to-peer (P2P) technologies have generated an increasing interest for the developers and the research community that find in them the solution to deal with the scalability problem of media streaming and reducing costs at the same time. However, despite of the benefits obtained in Internet-based applications and the growing deployment of commercial IPTV systems, there has been a little effort in combining them both. With the advent of the next-generation-network platforms such as the IP Multimedia Subsystem (IMS), which advocates for an open and inter-operable service infrastructure, P2P emerges as a possible solution in situations where the traditional streaming mechanisms are not possible or not economically feasible.In this paper, we propose an IPTV service architecture for the IMS that combines a centralized control layer and a distributed, P2P-like, media layer that relies on the IMS devices or peers located in the customers' premises to act as streaming forwarding nodes. We extend the existing IMS IPTV standardization work that has already been done in 3GPP and ETSI TISPAN in order to require a minimum number of architectural changes. The objective is to obtain a system with a similar performance to the one in currently deployed systems and with the flexibility of P2P. One of the main challenges is to achieve comparable response times to user actions such as changing and tuning into channels, as well as providing a fast recovery mechanism when streaming nodes leave. To accomplish this we introduce the idea of foster peers as peers having inactive multimedia sessions and reserved resources. These peers are on stand-by until their functionality is required and at that moment, they are able to accept downstream peers at short notice for events requiring urgent treatment like channel changing and recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.