ResumenA medida que la urbanización aumenta, el crecimiento de las ciudades implica consecuencias en los entornos de las ciudades en todo el mundo. En esta investigación el autor se detiene en el caso de Santiago de Chile, en donde se han producido importantes deseconomías y desequilibrios ambientales no previstos por los instrumentos de planificación territorial.
Palabras claveSantiago de Chile; crecimiento Urbano; planificación urbana; relación urbano -rural.
Abstract
The author analyzes the boundaries of the city of Santiago de Chile and its unbalanced relationship with the natural environment, social and economic, which is not yet regulated by existing planning instruments.
Key words
IntroducciónLa ciudad es el hábitat humano por excelencia; actualmente el 47% de la población mundial reside en ciudades y se proyecta que alcanzara un 60% en el año 2030 (UN, 1999). Con una población citadina cada vez mayor, la urbanización se convierte en el fenómeno urbano por excelencia, transformador de los paisajes naturales mundiales a través de cambios en los usos y coberturas del suelo, lo cual inevitablemente resulta en efectos sociales, económicos
The aerial biomass of Pinus radiata plantations in the Región del Maule, Chile, was estimated from linear models using databases of LiDAR and multispectral LANDSAT ETM+. Six descriptive height variables were obtained from the LiDAR point cloud; the 25%, 50%, 75%, 95% and 100% percentiles and the mean height. Two variables associated with the density of points were also obtained, which relate the returns between fixed weighted intervals calculated as a function of the observed biomass. For multispectral variables we used NDVI, corrected NVDI (NDVIc) and the "Tasseled Cap" components brilliance, greenness and humidity. The results showed coefficients of determination (R 2 ) between 0.801 and 0.814, with errors between 36.07 and 36.11 ton ha -1 for the models generated using height percentiles, and R 2 from 0.807 to 0.823 with errors between 36.06 and 36.84 ton ha-1 for transformed LiDAR data. Finally, the stepwise model using all available variables had R2 of 0.821-0.835 with errors of 34.28 -36.31 ton ha-1.Key words: ALS, forest above ground biomass, point cloud density, LiDAR, NDVIc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.