Multilevel inverters have gained attention in high-power applications due to their numerous advantages in comparison with conventional two-level inverters. In this paper a simplified Space-Vector Modulation (SVM) algorithm for a three-level Neutral-Point Clamped (NPC) inverter is implemented on a Freescale® DSP56F8037. The algorithm is based on a simplification of the space-vector diagram for a three-level inverter so that it can be used with a two-level inverter. Once the simplification has been achieved, calculation of the dwell times and the switching sequences are carried out in the same way as for the two-level SVM method. Details of the hardware design are included. Experimental results are analyzed to validate the performance of the simplified algorithm.
This paper presents a review of the power and torque coefficients of various wind generation systems, which involve the real characteristics of the wind turbine as a function of the generated power. The coefficients are described by mathematical functions that depend on the trip speed ratio and blade pitch angle of the wind turbines. These mathematical functions are based on polynomial, sinusoidal, and exponential equations. Once the mathematical functions have been described, an analysis of the grouped coefficients according to their function is performed with the purpose of considering the variations in the trip speed ratio for all the coefficients based on sinusoidal and exponential functions, and with the variations in the blade pitch angle. This analysis allows us to determine the different coefficients of power and torque used in wind generation systems, with the objective of developing algorithms for searching for the point of maximum power generated and for the active control of wind turbines with variations in the blade pitch angle.
In this work, the analysis of a CD-CD converter type Boost is presented. This converter works in Discontinuous Conduction Mode; In addition, the design of its control loops is performed, using an Average Current Mode control. The Boost converter is part of a photovoltaic generation system using solar panels. The photovoltaic system is established in a microgrid, with which the inverter works in grid mode and island mode. The main objective of the Boost convertor is to raise and regulate the voting from the solar panels to feed a single-bridge full-bridge inverter. The controllers designed for the boost converter are validated by simulation. The results obtained prove that the designed controller has an acceptable transient response to disturbances in the system input and adequately analyzing overdrafts and establishment times when disturbances are generated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.