Although spontaneous blinking is one of the most frequent human movements, little is known about its neural basis. We developed a rat model of spontaneous blinking in order to identify and better characterize the spontaneous blink generator. We monitored spontaneous blinking for 55 min periods in normal conditions and after the induction of mild dry eye or dopaminergic drug challenges. The normal spontaneous blink rate was 5.3 ± 0.3 blinks/min. Dry eye or 1 mg/kg apomorphine significantly increased and 0.1 mg/kg haloperidol significantly decreased the blink rate. Additional analyses revealed a consistent temporal organization to spontaneous blinking with a median 750 s period that was independent of the spontaneous blink rate. Dry eye and dopaminergic challenges significantly modified the regularity of the normal pattern of episodes of frequent blinking interspersed with intervals having few blinks. Dry eye and apomorphine enhanced the regularity of this pattern, whereas haloperidol reduced its regularity. The simplest explanation for our data is that the spinal trigeminal complex is a critical element in the generation of spontaneous blinks; incorporating reflex blinks from dry eye and indirect basal ganglia inputs into the blink generator. Although human subjects exhibited a higher average blink rate (17.6 ± 2.4) than rats, the temporal pattern of spontaneous blinking was qualitatively similar for both species. These data demonstrate that rats are an appropriate model for investigating the neural basis of human spontaneous blinking and suggest that the spinal trigeminal complex is a major element in the spontaneous blink generator.
Recent discoveries of striatal GABAergic interneurons require a new conceptualization of the organization of intrastriatal circuitry and their cortical and thalamic inputs. We investigated thalamic inputs to the two populations of striatal neuropeptide Y (NPY) interneurons, plateau low threshold spike (PLTS) and NPY-neurogliaform (NGF) cells. Optogenetic activation of parafascicular inputs evokes suprathreshold monosynaptic glutamatergic excitation in NGF interneurons and a disynaptic, nicotinic excitation through cholinergic interneurons. In contrast, the predominant response of PLTS interneurons is a disynaptic inhibition dependent on thalamic activation of striatal tyrosine hydroxylase interneurons (THINs). In contrast, THINs do not innervate NGF or fast spiking interneurons, showing significant specificity in THINs outputs. Chemospecific ablation of THINs impairs prepulse inhibition of the acoustic startle response suggesting an important behavioural role of this disynaptic pathway. Our findings demonstrate that the impact of the parafascicular nucleus on striatal activity and some related behaviour critically depend on synaptic interactions within interneuronal circuits.
Reflex blinks provide a model system for investigating motor learning in normal and pathological states. We investigated whether high-frequency stimulation (HFS) of the supraorbital branch of the trigeminal nerve before the R2 blink component (HFS-B) decreases reflex blink gain in alert rats. As with humans (Mao JB, Evinger C. J Neurosci 21: RC151, 2001), HFS-B significantly reduced blink size in the first hour after treatment for rats. Repeated days of HFS-B treatment produced long-term depression of blink circuits. Blink gain decreased exponentially across days, indicating a long-term depression of blink circuits. Additionally, the HFS-B protocol became more effective at depressing blink amplitude across days of treatment. This depression was not habituation, because neither long- nor short-term blink changes occurred when HFS was presented after the R2. To investigate whether gain modifications produced by HFS-B involved cerebellar networks, we trained rats in a delay eyelid conditioning paradigm using HFS-B as the unconditioned stimulus and a tone as the conditioned stimulus. As HFS-B depresses blink circuits and delay conditioning enhances blink circuit activity, occlusion should occur if they share neural networks. Rats acquiring robust eyelid conditioning did not exhibit decreases in blink gain, whereas rats developing low levels of eyelid conditioning exhibited weak, short-term reductions in blink gain. These results suggested that delay eyelid conditioning and long-term HFS-B utilize some of the same cerebellar circuits. The ability of repeated HFS-B treatment to depress trigeminal blink circuit activity long term implied that it may be a useful protocol to reduce hyperexcitable blink circuits that underlie diseases like benign essential blepharospasm.
The striatum mediates a broad range of cognitive and motor functions. Within the striatum, recently discovered tyrosine hydroxylase expressing interneurons (THINs) provide a source of intrastriatal synaptic connectivity that is critical for regulating striatal activity, yet the role of THIN's in behavior remains unknown. Given the important role of the striatum in reward‐based behaviors, we investigated whether loss of striatal THINs would impact instrumental behavior in mice. We selectively ablated striatal THINs in TH‐Cre mice using chemogenetic techniques, and then tested THIN‐lesioned or control mice on three reward‐based striatal‐dependent instrumental tests: (a) progressive ratio test; (b) choice test following selective‐satiety induced outcome devaluation; (c) outcome reinstatement test. Both striatal‐THIN‐lesioned and control mice acquired an instrumental response for flavored food pellets, and their behavior did not differ in the progressive ratio test, suggesting intact effort to obtain rewards. However, striatal THIN lesions markedly impaired choice performance following selective‐satiety induced outcome devaluation. Unlike control mice, THIN‐lesioned mice did not adjust their choice of actions following a change in outcome value. In the outcome reinstatement test THIN‐lesioned and control mice showed response invigoration by outcome presentation, suggesting the incentive properties of outcomes were not disrupted by THIN lesions. Overall, we found that striatal THIN lesions selectively impaired goal‐directed behavior, while preserving motoric and appetitive behaviors. These findings are the first to describe a function of striatal THINs in reward‐based behavior, and further illustrate the important role for intrastriatal interneuronal connectivity in behavioral functions ascribed to the striatum more generally.
Kaminer J, Thakur P, Evinger C. Effects of subthalamic deep brain stimulation on blink abnormalities of 6-OHDA-lesioned rats. J Neurophysiol 113: 3038 -3046, 2015. First published February 11, 2015 doi:10.1152/jn.01072.2014.-Parkinson's disease (PD) patients and the 6-hydroxydopamine (6-OHDA) lesioned rat model share blink abnormalities. In view of the evolutionarily conserved organization of blinking, characterization of blink reflex circuits in rodents may elucidate the neural mechanisms of PD reflex abnormalities. We examine the extent of this shared pattern of blink abnormalities by measuring blink reflex excitability, blink reflex plasticity, and spontaneous blinking in 6-OHDA lesioned rats. We also investigate whether 130-Hz subthalamic nucleus deep brain stimulation (STN DBS) affects blink abnormalities, as it does in PD patients. Like PD patients, 6-OHDA-lesioned rats exhibit reflex blink hyperexcitability, impaired blink plasticity, and a reduced spontaneous blink rate. At 130 Hz, but not 16 Hz, STN DBS eliminates reflex blink hyperexcitability and restores both short-and long-term blink plasticity. Replicating its lack of effect in PD patients, 130-Hz STN DBS does not reinstate a normal temporal pattern or rate to spontaneous blinking in 6-OHDA lesioned rats. These data show that the 6-OHDA lesioned rat is an ideal model system for investigating the neural bases of reflex abnormalities in PD and highlight the complexity of PD's effects on motor control, by showing that dopamine depletion does not affect all blink systems via the same neural mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.