Hospitals generate large amounts of data on a daily basis, but most of the time that data is just an overwhelming amount of information which never transitions to knowledge. Through the application of Data Mining techniques it is possible to find hidden relations or patterns among the data and convert those into knowledge that can further be used to aid in the decision-making of hospital professionals. This study aims to use information about patients with diabetes, which is a chronic (long-term) condition that occurs when the body does not produce enough or any insulin. The main purpose is to help hospitals improve their care with diabetic patients and consequently reduce readmission costs. An hospital readmission is an episode in which a patient discharged from a hospital is admitted again within a specified period of time (usually a 30 day period). This period allows hospitals to verify that their services are being performed correctly and also to verify the costs of these re-admissions. The goal of the study is to predict if a patient who suffers from diabetes will be readmitted, after being discharged, using Machine Leaning algorithms. The final results revealed that the most efficient algorithm was Random Forest with 0.898 of accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.