Hyaluronan signaling properties are unique among other biologically active molecules, that they are apparently not influenced by postsynthetic molecular modification, but by hyaluronan fragment size. This review summarizes the current knowledge about the generation of hyaluronan fragments of different size and size-dependent differences in hyaluronan signaling as well as their downstream biological effects.
Mast cells are important sentinels guarding the interface between the environment and the body: a breach in the integrity of this interface can lead to the release of a plethora of mediators which engage the foreign agent, recruit leukocytes, and initiate adaptive physiological changes in the organism. While these capabilities make mast cells critical players in immune defense, it also makes them important contributors to the pathogenesis of diseases such as asthma. Mast cell mediators induce dramatic changes in smooth muscle physiology, and the expression of receptors for these factors by smooth muscle suggests that they act directly to initiate constriction. Contrary to this view, we show here that mast cell-mediated bronchoconstriction is observed only in animals with intact innervation of the lung and that serotonin release alone is required for this action. While ablation of sensory neurons does not limit bronchoconstriction, constriction after antigen challenge is absent in mice in which the cholinergic pathways are compromised. Linking mast cell function to the cholinergic system likely provides an important means of modulating the function of these resident immune cells to physiology of the lung, but may also provide a safeguard against life-threatening anaphylaxis during mast cell degranulation.
Studies recently showed that intratracheal (IT) instillation of Libby amphibole (LA) increases circulating acute-phase proteins (APP; α-2 macroglobulin, A2M; and α-1 acid glycoprotein, AGP) and inflammatory biomarkers (osteopontin and lipocalin) in rats. In this study, objectives were to (1) compare changes in biomarkers of rats after instillation of different naturally occurring asbestos (NOA) minerals including LA, Sumas Mountain chrysotile (SM), El Dorado Hills tremolite (ED), and Ontario ferroactinolite cleavage fragments (ON), and (2) examine biomarkers after subchronic LA or amosite inhalation exposure. Rat-respirable fractions (aerodynamic diameter approximately 2.5 μm) prepared by water elutriation were delivered via a single IT instillation at doses of 0, 0.5, and 1.5 mg/rat in male F344 rats. Nose-only inhalation exposures were performed at 0, 1, 3.3, and 10 mg/m(3) for LA and at 3.3 mg /m(3) for amosite, 6h/d, 5 d/wk for 13 wk. Inflammation, metabolic syndrome, and cancer biomarkers were analyzed in the serum for up to 18 mo. IT instillation of some asbestos materials significantly increased serum AGP and A2M but to a varying degree (SM = LA > ON = ED). Numerical increases in interleukin (IL)-6 and osteopontin occurred in rats instilled with SM. SM and ED also elevated leptin and insulin at 15 mo, suggesting potential metabolic effects. LA inhalation tended to raise A2M at d 1 but not cytokines. Serum mesothelin appeared to elevate after 18 mo of LA inhalation. These results suggest that the lung injury induced by high levels of asbestos materials may be associated with systemic inflammatory changes and predisposition to insulin resistance.
Glutathione S-transferases (GSTs) form a superfamily defined by their ability to catalyze the conjugation of glutathione with electrophilic substrates. These enzymes are proposed to play a critical role in protection of cellular components from damage mediated by reactive metabolites. Twenty-two cytosolic GSTs, grouped into seven families, are recognized in mice. This complexity hinders the assignment of function to a subset or family of these genes. We report generation of a mouse line in which the locus encoding three GST gene families is deleted. This includes the four Gstt genes spanning 65 kb on chromosome 10 and the seven Gstm genes found on a 150 kb segment of DNA chromosome 3. In addition, we delete two Gstp genes on chromosome 19 as well as a third related gene located 15 kb telomeric to Gstp1 and Gstp2, which we identify as a potential new member of this gene family. We show that, despite the loss of up to 75% of total GST activity in some tissues from these animals, the mice are healthy and fertile, with normal life expectancy. The normal development and health of these animals make them an appropriate model for defining the role of these families in redox homeostasis and metabolism of drugs and environmental pollutants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.