The knowledge of the mechanical properties of any material subjected to loads is necessary for its use in structural applications. Silicon nitride (Si3N4) ceramics are well-known materials used in engineering applications due to their outstanding combination of high strength and fracture toughness. The most studied mechanical properties of Si3N4 are hardness, fracture toughness and mechanical resistance. Recent advances in the production processes that incorporate high purity rare earth elements as sintering additives have improved these mechanical properties. Using Vickers indentation method, the elastic module and fracture toughness of Si3N4 based materials modified with La2O3, Y2O3 and Al2O3 were determined as a function of the cracking system type that prevails under the effect of load. The results indicate that adding rare earth to the matrix increased the fracture toughness the Si3N4 base ceramic Samples containing La2O3+Y2O3 showed higher values of fracture toughness than the ones with Al2O3+La2O3, regardless of the equation used in the calculations. Meanwhile the elastic module decrease approximately 100 GPa for both types of nitrides by the effect of the temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.