During recent years the online social networks (in particular Twitter) have become an important alternative information channel to traditional media during natural disasters, but the amount and diversity of messages poses the challenge of information overload to end users. The goal of our research is to develop an automatic classifier of tweets to feed a mobile application that reduces the difficulties that citizens face to get relevant information during natural disasters. In this paper, we present in detail the process to build a classifier that filters tweets relevant and non-relevant to an earthquake. By using a dataset from the Chilean earthquake of 2010, we first build and validate a ground truth, and then we contribute by presenting in detail the effect of class imbalance and dimensionality reduction over 5 classifiers. We show how the performance of these models is affected by these variables, providing important considerations at the moment of building these systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.