MicroRNAs (miRNAs) are released from cells in association with proteins or microvesicles. We previously reported that malignant transformation changes the assortment of released miRNAs by affecting whether a particular miRNA species is released or retained by the cell. How this selectivity occurs is unclear. Here we report that selectively exported miRNAs, whose release is increased in malignant cells, are packaged in structures that are different from those that carry neutrally released miRNAs (n-miRNAs), whose release is not affected by malignancy. By separating breast cancer cell microvesicles, we find that selectively released miRNAs associate with exosomes and nucleosomes. However, n-miRNAs of breast cancer cells associate with unconventional exosomes, which are larger than conventional exosomes and enriched in CD44, a protein relevant to breast cancer metastasis. Based on their large size, we call these vesicles L-exosomes. Contrary to the distribution of miRNAs among different microvesicles of breast cancer cells, normal cells release all measured miRNAs in a single type of vesicle. Our results suggest that malignant transformation alters the pathways through which specific miRNAs are exported from cells. These changes in the particles and their miRNA cargo could be used to detect the presence of malignant cells in the body.
Circulating microRNAs (miRNAs) have emerged as candidate biomarkers of various diseases and conditions including malignancy and pregnancy. This approach requires sensitive and accurate quantitation of miRNA concentrations in body fluids. Herein we report that enzyme-based miRNA quantitation, which is currently the mainstream approach for identifying differences in miRNA abundance among samples, is skewed by endogenous serum factors that co-purify with miRNAs and anticoagulant agents used during collection. Of importance, different miRNAs were affected to varying extent among patient samples. By developing measures to overcome these interfering activities, we increased the accuracy, and improved the sensitivity of miRNA detection up to 30-fold. Overall, the present study outlines key factors that prevent accurate miRNA quantitation in body fluids and provides approaches that enable faithful quantitation of miRNA abundance in body fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.