The results indicate that citrate, myo-inositol and spermine are potentially important markers of PCa in human EPS. Further, the absolute concentrations of these metabolites in EPS appear to be independent of age, increasing the potential utility of these markers due to elimination of age as a confounding variable.
The development of imatinib resistance has become a significant therapeutic problem in which the etiology seems to be multifactorial and poorly understood. As of today, clinical criteria to predict the development of imatinib resistance in chronic myelogenous leukemia (CML), other than rebound of the myeloproliferation, are under development. However, there is evidence that the control of glucose-substrate flux is an important mechanism of the antiproliferative action of imatinib because imatinib-resistant gastrointestinal stromal KIT-positive tumors reveal highly elevated glucose uptake in radiologic images. We used nuclear magnetic resonance spectroscopy and gas chromatography mass spectrometry to assess 13 C glucose uptake and metabolism (glycolysis, TCA cycle, and nucleic acid ribose synthesis) during imatinib treatment in CML cell lines with different sensitivities to imatinib. Our results show that sensitive K562-s and LAMA84-s BCR-ABL-positive cells have decreased glucose uptake, decreased lactate production, and an improved oxidative TCA cycle following imatinib treatment. The resistant K562-r and LAMA84-r cells maintained a highly glycolytic metabolic phenotype with elevated glucose uptake and lactate production. In addition, oxidative synthesis of RNA ribose from 13 C-glucose via glucose-6-phosphate dehydrogenase was decreased, and RNA synthesis via the nonoxidative transketolase pathway was increased in imatinib-resistant cells. CML cells which exhibited a (oxidative/nonoxidative) flux ratio for nucleic acid ribose synthesis of >1 were sensitive to imatinib. The resistant K562-r and LAMA84-r exhibited a (oxidative/nonoxidative) flux ratio of <0.7. The changes in glucose uptake and metabolism were accompanied by intracellular translocation of GLUT-1 from the plasma membrane into the intracellular fraction in sensitive cells treated with imatinib, whereas GLUT-1 remained located at the plasma membrane in LAMA84-r and K562-r cells. The total protein load of GLUT-1 was unchanged among treated sensitive and resistant cell lines. In summary, elevated glucose uptake and nonoxidative glycolytic metabolic phenotype can be used as sensitive markers for early detection of imatinib resistance in BCR-ABL-positive cells.Chronic myelogenous leukemia (CML) is a myeloproliferative disorder associated with a t(9;22) chromosomal translocation which gives rise to the Philadelphia chromosome, resulting in the production of a BCR-ABL fusion protein (1, 2). A large portion of a proto-oncogene on chromosome 9, called ABL, is translocated to the BCR gene on chromosome 22 (2). The two gene segments are fused and ultimately produce a chimeric protein that is larger than the normal ABL protein (3).The development of novel targeted cancer-specific therapies is a major strategy in oncology, and the treatment of CML with imatinib mesylate (Gleevec or Glivec, formerly known as STI571) was the first successful proof of concept. Imatinib mesylate has revolutionized the way we treat CML its high level of activity, low toxicity...
Background and purpose: Early detection of resistance development is crucial for imatinib-based treatment in chronic myeloid leukaemia (CML) patients. We aimed to distinguish metabolic markers of cell resistance to imatinib. Experimental approach: Two human imatinib-sensitive CML cell lines: LAMA84-s and K562-s, and their resistant counterparts: LAMA84-r and K562-r (both resistant to 1 mM imatinib), and K562-R (5 mM) were analysed by nuclear magnetic resonance spectroscopy to assess global metabolic profiling, including energy state, glucose and phospholipid metabolism. Key results: We found, by Western blotting and flow cytometry, that the levels of Bcr-Abl tyrosine kinase and multi-drug resistance p-glycoprotein were inconsistent among resistant clones. On the other hand, phospholipid metabolism and lactate production were highly predictive for cell response to imatinib. As previously reported, sensitive cells showed significantly decreased glycolytic activity (lactate) and phospholipid synthesis (phosphocholine) as well as increased phospholipid catabolism (glycerophosphocholine) after 24 h of 1 mM imatinib treatment, which correlated with inhibition of cell proliferation and induction of apoptosis. In contrast to their sensitive counterparts, the K562-r, K562-R and LAMA84-r maintained increased phospholipid synthesis and glycolytic lactate production in the presence of 1 mM (K562-r and LAMA84-r) and 5 mM (K562-R) imatinib. Conclusions and implications: Specific metabolic markers for early detection of imatinib resistance, including increased glycolytic activity and phospholipid turnover, can be identified in resistant clones. Once validated in human isolated leukocytes, they may be used to monitor the responsiveness of CML patients to treatment.
Livers from obese donors often have fatty infiltrates and are more susceptible to ischemia-reperfusion injury and subsequent graft dysfunction. This often leads to the exclusion of organs from obese donors. We investigated whether ischemic preconditioning (IP, 10 min ischemia, 10 min reperfusion) preserves cellular metabolism in livers from obese Zucker rats during cold ischemia. Liver samples (-IP and +IP) were collected from obese and control lean rats at different time points of cold ischemia (CI) and analyzed by magnetic resonance spectroscopy (1H- and 31P-MRS) to assess whether IP improves hepatic cellular metabolism. IP significantly improved high energy metabolism in IP livers from obese rats when compared with obese controls during the first hours of CI. At 4 h of cold storage, obese IP livers were not different from control lean non-IP livers. The beneficial metabolic effect of IP on livers form obese rats, however, was absent at 8 h of reperfusion. In contrast, in livers from lean rats, IP resulted in improved high-energy metabolism during the entire observation period of 8 h. In a later part of the study, IP of liver grafts from obese rats before 4 h of cold storage improved recipient survival after graft transplantation. IP of liver grafts from obese rats before 4 h of CI increases 24-h survival of recipient animals from 25% to 88%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.