Summary Objective Epilepsy is a common neurologic disorder of childhood. To determine the genetic diagnostic yield in epileptic encephalopathy, we performed a retrospective cohort study in a single epilepsy genetics clinic. Methods We included all patients with intractable epilepsy, global developmental delay, and cognitive dysfunction seen between January 2012 and June 2014 in the Epilepsy Genetics Clinic. Electronic patient charts were reviewed for clinical features, neuroimaging, biochemical investigations, and molecular genetic investigations including targeted next‐generation sequencing of epileptic encephalopathy genes. Results Genetic causes were identified in 28% of the 110 patients: 7% had inherited metabolic disorders including pyridoxine dependent epilepsy caused by ALDH7A1 mutation, Menkes disease, pyridox(am)ine‐5‐phosphate oxidase deficiency, cobalamin G deficiency, methylenetetrahydrofolate reductase deficiency, glucose transporter 1 deficiency, glycine encephalopathy, and pyruvate dehydrogenase complex deficiency; 21% had other genetic causes including genetic syndromes, pathogenic copy number variants on array comparative genomic hybridization, and epileptic encephalopathy related to mutations in the SCN1A, SCN2A, SCN8A, KCNQ2, STXBP1, PCDH19, and SLC9A6 genes. Forty‐five percent of patients obtained a genetic diagnosis by targeted next‐generation sequencing epileptic encephalopathy panels. It is notable that 4.5% of patients had a treatable inherited metabolic disease. Significance To the best of our knowledge, this is the first study to combine inherited metabolic disorders and other genetic causes of epileptic encephalopathy. Targeted next‐generation sequencing panels increased the genetic diagnostic yield from <10% to >25% in patients with epileptic encephalopathy.
We report treatment outcome of eleven patients with pyridoxine-dependent epilepsy caused by pathogenic variants in ALDH7A1 (PDE-ALDH7A1). We developed a clinical severity score to compare phenotype with biochemical features, genotype and delays in the initiation of pyridoxine. Clinical severity score included 1) global developmental delay/ intellectual disability; 2) age of seizure onset prior to pyridoxine; 3) current seizures on treatment. Phenotype scored 1-3 = mild; 4-6 = moderate; and 7-9 = severe. Five patients had mild, four patients had moderate, and two patients had severe phenotype. Phenotype ranged from mild to severe in eight patients (no lysine-restricted diet in the infantile period) with more than 10-fold elevated urine or plasma α-AASA levels. Phenotype ranged from mild to moderate in patients with homozygous truncating variants and from moderate to severe in patients with homozygous missense variants. There was no correlation between severity of the phenotype and the degree of α-AASA elevation in urine or genotype. All patients were on pyridoxine, nine patients were on arginine and five patients were on the lysine-restricted diet. 73% of the patients became seizure free on pyridoxine. 25% of the patients had a mild phenotype on pyridoxine monotherapy. Whereas, 100% of the patients, on the lysine-restricted diet initiated within their first 7 months of life, had a mild phenotype. Early initiation of lysine-restricted diet and/or arginine therapy likely improved neurodevelopmental outcome in young patients with PDE-ALDH7A1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.