Background and aim: Leptin, a hormone mainly produced by fat cells, acts primarily on the hypothalamus regulating energy expenditure and food intake. Leptin receptors are expressed in several tissues and the possible physiological role of leptin is being extensively investigated, with the result that important peripheral actions of the hormone in the organism are being discovered. Recent studies have demonstrated leptin and leptin receptor expression in gastric epithelial cells. In the present study, we report the presence of the long leptin receptor isoform (OB-Rb) in human, rat, and mouse small intestine, supporting the hypothesis of leptin as a hormone involved in gastrointestinal function. Methods: The presence of the leptin receptor was determined by immunocytochemical methods using antibodies against the peptide corresponding to the carboxy terminus of the long isoform of the leptin receptor. Human duodenal biopsies from normal individuals undergoing gastrointestinal endoscopy, and intestinal fragments of Wistar rats and Swiss mice were processed for the study. Results: Immunoreactivity for the long leptin receptor isoform was observed in the three studied species. Staining was located throughout the cytoplasm of the enterocytes, of both villi and crypts, and in the basolateral plasma membrane. Immunolabelling for OB-Rb protein was also found in the brush border of human enterocytes of formol and paraformaldehyde fixed samples. Conclusion: This report demonstrates the presence of the long leptin receptor isoform in the absorptive cells of rat, mouse, and human small intestine, suggesting that leptin could have a physiological role in the regulation of nutrient absorption.
Melatonin is a lipophilic hormone, mainly produced and secreted at night by the pineal gland. Melatonin synthesis is under the control of postganglionic sympathetic fibers that innervates the pineal gland. Melatonin acts via high affinity G protein-coupled membrane receptors. To date, three different receptor subtypes have been identified in mammals: MT1 (Mel 1a) and MT2 (Mel 1b) and a putative binding site called MT3. The chronobiotic properties of the hormone for resynchronization of sleep and circadian rhythms disturbances has been demonstrated both in animal models or in clinical trials. Several other physiological effects of melatonin in different peripheral tissues have been described in the past years. In this way, it has been demonstrated that the hormone is involved in the regulation of seasonal reproduction, body weight and energy balance. This contribution has been focused to review some of the physiological functions of melatonin as well as the role of the hormone in the regulation of energy balance and its possible involvement in the development of obesity.
Background-The fibrinolytic and matrix metalloproteinase (MMP) systems cooperate in thrombus dissolution and extracellular matrix proteolysis. The plasminogen/plasmin system activates MMPs, and some MMPs have been involved in the dissolution of fibrin by targeting fibrin(ogen) directly or by collaborating with plasmin. MMP-10 has been implicated in inflammatory/thrombotic processes and vascular integrity, but whether MMP-10 could have a profibrinolytic effect and represent a promising thrombolytic agent is unknown. Methods and Results-The effect of MMP-10 on fibrinolysis was studied in vitro and in vivo, in MMP-10 -null mice (Mmp10 Ϫ/Ϫ ), with the use of 2 different murine models of arterial thrombosis: laser-induced carotid injury and ischemic stroke. In vitro, we showed that MMP-10 was capable of enhancing tissue plasminogen activator-induced fibrinolysis via a thrombin-activatable fibrinolysis inhibitor inactivation-mediated mechanism. In vivo, delayed fibrinolysis observed after photochemical carotid injury in Mmp10 Ϫ/Ϫ mice was reversed by active recombinant human MMP-10. In a thrombin-induced stroke model, the reperfusion and the infarct size in sham or tissue plasminogen activator-treated animals were severely impaired in Mmp10 Ϫ/Ϫ mice. In this model, administration of active MMP-10 to wild-type animals significantly reduced blood reperfusion time and infarct size to the same extent as tissue plasminogen activator and was associated with shorter bleeding time and no intracranial hemorrhage. This effect was not observed in thrombin-activatable fibrinolysis inhibitor-deficient mice, suggesting thrombin-activatable fibrinolysis inhibitor inactivation as one of the mechanisms involved in the MMP-10 profibrinolytic effect. Conclusions-A novel profibrinolytic role for MMP-10 in experimental ischemic stroke is described, opening new pathways for innovative fibrinolytic strategies in arterial thrombosis. (Circulation. 2011;124:2909-2919.)Key Words: fibrinolysis Ⅲ metalloproteinases Ⅲ stroke Ⅲ TAFI Ⅲ thrombolysis S troke is a leading cause of death and disability in developed countries. 1 Permanent brain damage after a stroke induces death of brain cells and causes irreversible neurological damage. The majority of strokes are ischemic, caused by a thrombotic or embolic blood clot that leads to suddenly decrease blood flow in a major cerebral artery, commonly the middle cerebral artery (MCA). Prompt treatment with thrombolytic drugs to remove the clot can restore blood flow before major brain damage occurs and improves recovery after stroke 2 ; however, these drugs can also cause serious bleeding in the brain, which can be fatal. Recombinant tissue plasminogen activator (rtPA), a main activator of fibrinolytic system, is the only drug licensed for use in highly selected patients within 3 to 4.5 hours of stroke. 3 Clinical Perspective on p 2919The fibrinolytic and matrix metalloproteinase (MMP) systems cooperate in thrombus dissolution. 4 Besides MMP activation by the plasminogen/plasmin system, several studies hav...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.