Node localisation is one of the significant concerns in Wireless Sensor Networks (WSNs). It is a process in which we estimate the coordinates of the unknown nodes using sensors with known coordinates called anchor nodes. Several bio-inspired algorithms have been proposed for accurate estimation of the unknown nodes. However, use of bio-inspired algorithms is a highly time-consuming process. Hence, finding optimal network parameters for node localisation during the network setup process with the desired accuracy in a short time is still a challenging task. In this article, we have proposed an efficient way to evaluate the optimal network parameters that result in low Average Localisation Error (ALE) using a machine learning approach based on Support Vector Regression (SVR) model. We have proposed three methods (S-SVR, Z-SVR and R-SVR) based on feature standardisation for fast and accurate prediction of ALE. We have considered the anchor ratio, transmission range, node density and iterations as features for training and prediction of ALE. These feature values are extracted from the modified Cuckoo Search (CS) simulations. In doing so, we found that all the methods perform exceptionally well with method R-SVR outperforming the other two methods with a correlation coefficient (R = 0.82) and Root Mean Square Error (RMSE = 0.147m).
Momentous increase in the popularity of explainable machine learning models coupled with the dramatic increase in the use of synthetic data facilitates us to develop a cost-efficient machine learning model for fast intrusion detection and prevention at frontier areas using Wireless Sensor Networks (WSNs). The performance of any explainable machine learning model is driven by its hyperparameters. Several approaches have been developed and implemented successfully for optimising or tuning these hyperparameters for skillful predictions. However, the major drawback of these techniques, including the manual selection of the optimal hyperparameters, is that they depend highly on the problem and demand application-specific expertise. In this paper, we introduced Automated Machine Learning (AutoML) model to automatically select the machine learning model (among support vector regression, Gaussian process regression, binary decision tree, bagging ensemble learning, boosting ensemble learning, kernel regression, and linear regression model) and to automate the hyperparameters optimisation for accurate prediction of numbers of k-barriers for fast intrusion detection and prevention using Bayesian optimisation. To do so, we extracted four synthetic predictors, namely, area of the region, sensing range of the sensor, transmission range of the sensor, and the number of sensors using Monte Carlo simulation. We used 80% of the datasets to train the models and the remaining 20% for testing the performance of the trained model. We found that the Gaussian process regression performs prodigiously and outperforms all the other considered explainable machine learning models with correlation coefficient (R = 1), root mean square error (RMSE = 0.007), and bias = − 0.006. Further, we also tested the AutoML performance on a publicly available intrusion dataset, and we observed a similar performance. This study will help the researchers accurately predict the required number of k-barriers for fast intrusion detection and prevention.
The dramatic increase in the computational facilities integrated with the explainable machine learning algorithms allows us to do fast intrusion detection and prevention at border areas using Wireless Sensor Networks (WSNs). This study proposed a novel approach to accurately predict the number of barriers required for fast intrusion detection and prevention. To do so, we extracted four features through Monte Carlo simulation: area of the Region of Interest (RoI), sensing range of the sensors, transmission range of the sensor, and the number of sensors. We evaluated feature importance and feature sensitivity to measure the relevancy and riskiness of the selected features. We applied log transformation and feature scaling on the feature set and trained the tuned Support Vector Regression (SVR) model (i.e., LT-FS-SVR model). We found that the model accurately predicts the number of barriers with a correlation coefficient (R) = 0.98, Root Mean Square Error (RMSE) = 6.47, and bias = 12.35. For a fair evaluation, we compared the performance of the proposed approach with the benchmark algorithms, namely, Gaussian Process Regression (GPR), Generalised Regression Neural Network (GRNN), Artificial Neural Network (ANN), and Random Forest (RF). We found that the proposed model outperforms all the benchmark algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.